Meme Magic
Sprint 1 - Design

The year is 2006 and Google has just bought YouTube. As a budding tech entrepreneur, you've
had a great idea for a killer new app that allows you to take a photo, apply a funny caption and
share it with your friends. You call it a “meme’”

To get started with your app, you're going to need to design some classes. You sit down with
your design team and get to work. You decide to model your app with Users and Memes. Each
Meme will have a Backgroundimage and the associated caption. Users can assign Ratings to
Memes and share Memes on a Feed so that others can view and laugh at their creations.

Learning Goals

In this assignment, we will practice:
1. Creating UML (Unified Modeling Language) diagrams
2. Implementing class design consisting of method stubs
3. Utilizing style guidelines for increased readability and consistency
4. Including appropriate comments for clarity and readability

Designing the System

To begin with, you will use Unified Modeling Language to design the classes. You may create
these using text editors, an image editor, or standard office program with drawing tools. Export
the finished UML diagram(s) as PDF before submitting. Only PDF files of your UML will be
graded.

Create a UML document that reflects the following classes with indicated state and behavior.
You do not need to illustrate inheritance and composition for these documents as we have not
fully covered that material. We have also not yet covered the ArrayList < types seen below,
but we include them for completeness.

All instance variables should be private. You should include getters and setters for every
instance variable (i.e, field). These are often left out of UML documents, but it is good practice
for you! For each class, include a simple constructor with no parameters. All methods should
be public. All methods have a return type of void unless otherwise specified. Classes do not
need a main method. No methods should be static.

User

Create a class User. The User class requires three fields (i.e., instance variables). Their type is
indicated in italics:

e userName String

e memesCreated ArrayList<Meme>

e memesViewed ArraylList<Meme>

The User class requires the following eight methods in addition to a getter and setter method
for each instance variable mentioned above:
e rateMeme (accepts a Meme and an int (rating))
createMeme (accepts a Backgroundimage and a String (caption), returns a Meme)
deleteMeme (‘accepts a Meme, returns a boolean)
shareMeme (accepts a Meme and a Feed)
rateNextMemeFromFeed (accepts a Feed and an int (ratingScore))
calculateReputation (returns a double, by default use 0.0)
toString (returns a String)
equals (accepts an Object, returns a boolean)

Backgroundimage

Create a class BackgroundImage. The BackgroundImage class requires three instance
variables:

e imageFileName String

e title String

e description String

BackgroundImage requires two methods, plus a getter and setter for each instance variable:
e toString (returns a String)
e cquals (‘accepts an Object, returns a boolean)

Meme

Create a class Meme. The Meme class requires six instance variables:
e creator User

backgroundimage Backgroundimage

ratings Rating|]

caption String

captionVerticalAlign String

shared boolean

The Meme class requires the following methods, plus a getter and setter for each instance
variable:

e addRating (accepts a Rating, returns a boolean)

e calculateOverallRating (returns a double)

e toString (returns a String)

e cquals (‘accepts an Object, returns a boolean)

Rating

Create a class Rating. The Rating class requires two instance variables:
e scoreint
® user User

The Rating class requires the following methods, plus a getter and setter for each instance
variable:

e toString (returns a String)

e cquals (‘accepts an Object, returns a boolean)

Feed

Create a class Feed. The Feed class requires one instance variable:
e memes ArraylList<Meme>

The Feed class requires the following methods plus a getter and setter for the lone field.
e getNewMeme (accepts a User, returns a Meme)
e toString (returns a String)

Creating Starter Code

Once you have created the UML description document(s), create a new Java Project in Eclipse
for MemeMagic1 and create the classes you just designed as User. java,
BackgroundImage.java, Rating. java, Feed. java, and Meme. java.

Do not write an implementation for the methods (this will be done in future sprints), simply
“stub” the methods out. More specifically, write the correct method header and in the body of
the method, provide a valid return value (if applicable). If the method returns an object, you
may return a default value of nulT.

A few notes about creating your starter code in Eclipse for this assignment:
e Depending on your version of Eclipse, if you use the auto-generators for getters, it may
generate isShared() as a getter method for Meme’s shared instance variable. For our

implementations, we will expect the standard naming of getShared/setShared
instead.

e You must match method names, instance variable names, and data types exactly. You
must use correctly formatted Java code. Declare fields in the class definition, and create
a default constructor for each class that initializes every instance variable. For methods
that you are overriding (i.e, equals() and toString()), use the @0verride
annotation before the method header.

Coding Style: In real-world software development, it is paramount to create readable and
easily maintainable code. That is typically achieved through the use of style and commenting
guidelines. Since you will be updating this code over the next few weeks, we have provided a
style guide and formatting guide that we strongly encourage you to follow:

e Coding Style Guide (includes installation instructions for Eclipse)

e Eclipse Style File

Additional Resources

The following resources may be helpful when completing and submitting this sprint.
e Short guide on writing UML in text documents
e Draw.iois a web-based drawing and diagramming tool
o To use the tool, create a blank diagram, then open the UML toolbox on the
left-hand side. Class diagram templates should be in the top row under UML.
Short guide on method stubs
Video on submitting to Gradescope

Submission
You must submit both portions of your assignment to Gradescope.

UML Diagrams: Upload the PDF of your UML diagrams to the “Meme Magic 1 UML" assignment
on Gradescope. Only PDFs will be accepted.

Java Code: Upload your Eclipse project (the . java files) to the “Meme Magic 1Java” assignment
on Gradescope. This submission utilizes an autograder to check your class definitions and
method names. Submissions for the Java portion will open 3 days after the UML submission.

For this assignment, you may upload your code and/or diagrams an unlimited number of
times.

https://app.diagrams.net

Grading Rubric

The assignment will be worth a total of 100 points:
10 points each - UML Diagrams for User, Backgroundimage, Meme, Rating, and Feed
10 points each - Java files for User.java, Backgroundimage.java, Meme.java, Rating.java, Feed.java

Meme Magic
Sprint 2 - Build 1

You are proud of your team, the design is solid and ready to be built. We will sprint out the
build into three phases, each with a scenario test. This first sprint will include the Meme,
BackgroundImage, and Rating classes.

First, set up your project:

e Create a new Java project on Eclipse, and call it MemeMagic2.

e Copy all of your MemeMagic1 files into the MemeMagic?2 project.

e Maintain a copy of MemeMagic1 files (i.e, do not overwrite them.)
Note: you may alternatively copy your project in Eclipse by selecting the MemeMagic1 project
in the Package Explorer, copy with Ctrl+c (or Command+c on mac), and paste with Ctrl+p (or
Command+p on mac). On pasting, Eclipse will ask you to name the newly-pasted project.

Learning Goals

In this assignment, we will practice:

1. Implementing default and overloaded constructors
Implementing getter and setter (accessor and mutator) methods
Utilizing an array to store reference objects
Experiencing inheritance from Object: overriding toString() and equals() methods
Incorporating main-method testing to check correctness (i.e., behavior matches
specifications)

s W

Implementation

Implement methods for the three classes as described below. When creating a constructor, if a
class has more fields than specified in the constructor, initialize these fields with default
values. Note that some of these classes make use of the User class, which has method stubs
but is not fully implemented at this point. We will implement it in the next sprint.

Backgroundimage

e Create a constructor that accepts an imageFileName, a title, and description as
arguments

e Implement all getters and setters
e toString() - returns "title <description>"
o ex:
How bots laugh <Image of Joquain Phoenix in his role as Joker, laughing
maniacally>
e equals(Object) - return true if the parameter is a Backgroundimage object and this
object's title, description, and imageFileName all match those of the parameter.

Meme

e Create a constructor that accepts a backgroundImage, caption, and creator (User)
as arguments. It must initialize ratings to an array of size 10 and the
captionVerticalAlign to “bottom”.

e Implement all getters and setters

e toString() - returns "backgroundimage ‘caption' overallRating [+1: the number of +1
ratings, -1: the number of -1 ratings]"

o ex:
How bots laugh <Image of Joquain Phoenix in his role as Joker, laughing
maniacally> 'When your professor calls an in person meeting at 9 AM EST and
you live in Cali' 5.0 [+1: 6, -1: 1]
Note: overallRating is the value returned by calculateOverallRating()
Hint: there is a lot going on in this string. Consider how additional private helper
methods might make this easier to read.

e cquals(Object) - return true if the parameter is a Meme object and both instances
match on creator, caption and backgroundImage

o Note: since we have not specified the equality of User objects, you may need to
update your User class’ equals() method to use its parent's method with the
super keyword:

public boolean equals(Object o) {
return super.equals(o);
}
By making this change, two User objects will be equal if they are the same
object in memory, since the parent of User is Object. We'll relax that
constraint in Sprint 3 when we specify the functionality of the User class.

e calculateOverallRating() - return a double that is a sum of all rating scores for
this Meme. If @ Meme has no ratings, 0.0 should be returned.

e addRating(Rating) - adds the Rating object to the Meme’s array of ratings,
returning true if successful and false otherwise. If the array is full, it must shift all
ratings one position up and insert the new one at the last position in the array. It will
discard the original first element.

e setCaptionVerticalAlign(String) - This setter requires specifically-allowed
values only. The only allowed values for captionVerticalAlign are: “top”, “middle”,
and “bottom”, which define the placement of the caption on the background image.
This method will therefore return a boolean: true if the captionVerticalAlign could be
updated based on the given parameter, and false otherwise.

Rating

e C(reate a constructor that accepts a user and a score
o Note the requirements for the score defined below in setScore(). If an
improper score value is given, then set the score to 0.
e Implement all getters and setters not explicitly specified below
e toString() - returns "Rating was type_of_rating"

o Ex:ifthe score is +1, then it will return: Rating was an upvote

o Ex: ifthe score is -1, then it will return: Rating was a downvote

o Ex:ifthe score is 0, then it will return: Rating was a pass

o Remember: We have not implemented the User class, so we cannot include it in

the String at this point. We'll have to do some integration tasks later!

e equals(Object) - returns true if the parameter is a Rating object and this Rating’s
score and user are equal to those of the parameter.

o Note: since we have not specified the equality of User objects, you may need to
update your User class’ equals() method to use its parent’s method with the
super keyword:

public boolean equals(Object o) {
return super.equals(o);
}
By making this change, two User objects will be equal if they are the same
object in memory, since the parent of User is Object. We'll relax that
constraint in Sprint 3 when we specify the functionality of the User class.

e setScore(int) - This setter requires specifically-allowed values only. Users can
upvote, downvote or pass on a rating, giving a score of +1, -1, or 0, respectively. Ensure
this method will only accept those values. This method will therefore return a boolean:
true if the score could be updated based on the given parameter, and false otherwise.

Main Method Testing

In this sprint, we expect you to do your own main method testing. Although the amount of
main method testing is not limited, please provide at least two tests each for the following:
e The three (3) new constructors we've asked for in this sprint
o One each for Backgroundimage, Meme, and Rating
e Backgroundimage, Meme, and Rating’s toString() methods

e Backgroundimage, Meme, and Rating’'s equals() methods
e Meme'scalculateOverallRating()

e Meme'saddRating()

e Meme'ssetCaptionVerticalAlign()

e Rating's setScore()

Note: Your main method should have enough testing to provide sufficient evidence to
determine that the behavior implemented matches the behavior described above. It is highly
recommended to write the tests before implementation as it will help you to understand the
exact behavior and what is the expected output of different inputs. That will be especially
important for corner cases, such as a full or empty array for addRating().

You will only be able to submit to Gradescope a total of 10 times for this assignment; please
test your code’s functionality with main method testing before submitting.

Additional Resources

The following resources may be helpful when completing and submitting this sprint.
e JavaDoc style documentation for each of the classes and methods described above
e Video on submitting to Gradescope

Submission Information

Method and Class Naming: You must match method names, instance variable names, and data
types exactly. You must use correctly formatted Java code. Declare fields in the class definition,
and create a default constructor for each class that initializes every instance variable. For
methods that you are overriding (i.e., equals() and toString()), use the @0Override
annotation before the method header.

Coding Style: In real-world software development, it is paramount to create readable and
easily maintainable code. That is typically achieved through the use of style and commenting
guidelines. Since you will be updating this code over the next few weeks, we have provided a
style guide and formatting guide that we strongly encourage you to follow:

e Coding Style Guide (includes installation instructions for Eclipse)

e Eclipse Style File

Submitting: Upload your Eclipse project (the . java files) to the “Meme Magic 2" assignment
on Gradescope. You should submit BackgroundImage. java, Meme. java, Rating. java,
along with User. java (“as is” from Sprint 1), and Feed. java (“as is” from Sprint 1). This
submission utilizes an autograder to check that your code follows these specifications. If it
spots a disconnect or bug, it will alert you, but you should NOT use the submission system as

your testing. Testing should be done during the implementation phase. Therefore, for this
assignment, you may upload your code a maximum of ten (10) times.

Note: After the 10th submission, Gradescope will still allow submissions, but they will NOT be
graded by the system.

Grading Rubric

The assignment will be worth a total of 100 points:
80 points - Method and implementation correctness, auto-graded using Gradescope
(we will only be checking Backgroundimage, Meme, and Rating classes)
15 points - Main method testing
5 points - Code readability (organized, well-indented, readable by others)

Academic Integrity and Moving into Meme Magic 3

After submitting this sprint (and after the late submission deadline), you are encouraged to
collaborate with your group members on what you missed and you are allowed to share code
for those parts. However, everyone who collaborates must have already submitted their code
and may not resubmit to this sprint.

You must understand any code you incorporate, as you'll be using it to complete the next (and
subsequent) sprint. We will not be directly testing the code from this sprint again. You must
list your collaborators in the comment at the top of each file that has any amount of shared
code.

Meme Magic
Sprint 3 - Build 2

You are proud of your team, they are making great progress. We will continue the building of
the system in sprint 2. This sprint will include the User and Feed classes, along with some
integration tasks.

First, set up your project:

e C(Create a new Java project on Eclipse, and call it MemeMagic3.

e Copy all of your MemeMagic?2 files into the MemeMagic3 project.

e Maintain a copy of MemeMagic?2 files (i.e., do not overwrite them.)
Note: you may alternatively copy your project in Eclipse by selecting the MemeMagic2 project
in the Package Explorer, copy with Ctrl+c (or Command+c on mac), and paste with Ctrl+p (or
Command+p on mac). On pasting, Eclipse will ask you to name the newly-pasted project.

Learning Goals

In this assignment, we will practice:
1. Utilizing ArraylList to store and organize objects
2. Integrating newly implemented classes into an existing codebase
3. Incorporating main-method testing to check correctness (i.e., behavior matches
specifications)

Implementation

Implement methods for the classes as described below. When creating a constructor, if a class
has more fields than specified in the constructor, initialize these fields with default values.

User

e create a constructor that accepts a String for userName
e toString() - returns "username has rated (number of memes viewed) memes,
(reputation)"
o Note: the reputation should be rounded to 1 decimal place.
o ex:
derrickstone has rated (10) memes, (9.0)
e cquals(Object) - returns true if the parameter is a User object and this User’s
userName is equal to that of the parameter.

Feed

rateMeme(Meme, int) - this method accepts a Meme argument and an int for
rating score. It will record that Meme as having been seen by this user (nemesViewed)
and give it a Rating of this score.

rateNextMemeFromFeed(Feed, int) - this method accepts a feed argument and
an int for rating score and returns a boolean. The method will get a Meme from the
Feed (supplied as an argument) using the getNewMeme (User) method of the Feed
class. It will record that Meme as having been viewed by the user, give it the rating score,
and return true. If there are no Memes left to view, the method should return false (and
should not throw an error).

Note: the return type has been updated from Sprint 1to return a boolean.
createMeme(BackgroundImage, String) - creates a new Meme object using the
supplied arguments (String is the caption) and with the current user set as the
creator. This method will add the resulting Meme to the list of createdMemes for the
current user.

deleteMeme(Meme) - deletes this Meme if found in the memesCreated field for the
current user, only if the shared field is false. (Because anything shared on the Internet
lives forever.) If the deletion was successful, return true. Otherwise, return false.
shareMeme(Meme, Feed) - marks that Meme as shared (sets the shared field to true)
and copies it to the ArrayList<Meme> data structure on the supplied Feed.
calculateReputation() - returns a value calculated as the average of all overall
ratings (caclulateOverallRating()) for Memes created by this User. If the user
has not created any Memes or had any Memes rated, @.0 should be returned.

getNewMeme(User) - return a Meme from the current Feed that the User has not
seen (does not exist in that User's memesViewed list) and that the User did not
create themselves. If there is no Meme to return, return null.
toString() - returns all the memes in the feed, each Meme on a new line. Note that
the toString() methods for both Meme and Rating need to be updated to integrate
with the User and Feed implementation.
o Ex
How bots laugh <Image of Joquain Phoenix in his role as Joker, laughing
maniacally> 'When your professor calls an in person meeting at 9 AM EST and
you live in Cali' 5.0 [+1: 6, -1: 1] - created by derrickstone
Too sad <Image of tearful Ritten> 'When you laugh at insistence on comments in
school and then get a job programming where nobody comments' -2.0 [+1: 4, -1:
6] - created by derrickstone
Robots Eating <Robots seated at table with server> 'When you go out for a byte'
1.0 [+1: 3, -1: 2] - created by user01001011

Integration

Now that you have implemented the User class, we must integrate it into the previously-built
portions of the system. Using the following specifications, update these methods of the Meme
and Rating classes.

Meme

e toString() - returns "backgroundimage ‘caption' overallRating [+1: the number of +1
ratings, -1: the number of -1 ratings] - created by userName"

o ex
How bots laugh <Image of Joquain Phoenix in his role as JoRer, laughing
maniacally> 'When your professor calls an in person meeting at 9 AM EST and
you live in Cali' 5.0 [+1: 6, -1: 1] - created by derrickstone

o Note: overallRating is the value returned by calculateOverallRating().

o Note: userName is the userName of the creator User.

o Hint: there is a lot going on in this string. Consider how additional private helper
methods might make this easier to read.

Rating

e toString() - returns "userName rated as type_of_rating"
o For example, if the user object has userName derrickstone:
m if the score is +1, then it will return: derrickstone rated as an upvote
m if the score is -1, then it will return: derrickstone rated as a downvote
m if the score is O, then it will return: derrickstone rated as a pass

Main Method Testing

In this sprint, we expect you to do your own main method testing. Although the amount of

main method testing is not limited, please provide at least two tests each for the following:
e The new constructor we've asked for in this sprint (User)

User, Feed, Meme, and Rating’s toString() methods

User's equals() method

Feed's getNewMeme()

User's rateMeme()

User's rateNextMemeFromFeed()
User's createMeme()

User's deleteMeme()

User's shareMeme()

User's calculateReputation()

Note: Your main method should have enough testing to provide sufficient evidence to
determine that the behavior implemented matches the behavior described above. It is highly
recommended to write the tests before implementation as it will help you to understand the
exact behavior and what is the expected output of different inputs. That will be especially
important for corner cases, such as deleting a shared meme in deleteMeme() or getting the

next meme from an empty feed in rateNextMemeFromFeed().

You will only be able to submit to Gradescope a total of 10 times for this assignment; please
test your code’s functionality with main method testing before submitting.

Additional Resources

The following resources may be helpful when completing and submitting this sprint.
e JavaDoc style documentation for each of the classes and methods described above
e Video on submitting to Gradescope
e The following code will print the string 5.0
System.out.println(String.format("%.1f", 4.999999));

Submission Information

Method and Class Naming: You must match method names, instance variable names, and data
types exactly. You must use correctly formatted Java code. Declare fields in the class definition,
and create a default constructor for each class that initializes every instance variable. For
methods that you are overriding (i.e., equals() and toString()), use the @0verride
annotation before the method header.

Coding Style: In real-world software development, it is paramount to create readable and
easily maintainable code. That is typically achieved through the use of style and commenting
guidelines. Since you will be updating this code over the next few weeks, we have provided a
style guide and formatting guide that we strongly encourage you to follow:

e Coding Style Guide (includes installation instructions for Eclipse)

e Eclipse Style File

Submitting: Upload your Eclipse project (the . java files) to the “Meme Magic 3" assignment
on Gradescope. You should submit User. java, Feed. java, Rating. java,
BackgroundImage. java, and Meme. java. This submission utilizes an autograder to check
that your code follows these specifications. If it spots a disconnect or bug, it will alert you, but
you should NOT use the submission system as your testing. Testing should be done during the
implementation phase. Therefore, for this assignment, you may upload your code a maximum
of ten (10) times.

Note: After the 10th submission, Gradescope will still allow submissions, but they will NOT be
graded by the system.

Grading Rubric

The assignment will be worth a total of 100 points:
80 points - Method and implementation correctness, auto-graded using Gradescope
15 points - Main method testing
5 points - Code readability (organized, well-indented, readable by others)

Academic Integrity and Moving into Sprint 4

After submitting this sprint (and after the late submission deadline), you are encouraged to
collaborate with your group members on what you missed and you are allowed to share code
for those parts. However, everyone who collaborates must have already submitted their code
and may not resubmit to this sprint.

You must understand any code you incorporate, as you'll be using it to complete the next (and
subsequent) sprint. We will not be directly testing the code from this sprint again. You must
list your collaborators in the comment at the top of each file that has any amount of shared
code.

Meme Magic
Sprint 4 - Feature Add 1

Your users have asked for their first additional feature. They love the Meme Magic system so
far, but they would really like the ability to sort Memes in their Feeds.

First, set up your project:

e C(Create a new Java project on Eclipse, and call it MemeMagicé.

e Copy and import all of your MemeMagic3 files into the MemeMagic4 project.

e Maintain a copy of MemeMagic3 files (i.e., do not overwrite them.)
Note: you may alternatively copy your project in Eclipse by selecting the MemeMagic3 project
in the Package Explorer, copy with Ctrl+c (or Command+c on mac), and paste with Ctrl+p (or
Command+p on mac). On pasting, Eclipse will ask you to name the newly-pasted project.

Learning Goals

In this assignment, we will practice:

1. Implementing the Comparable interface to produce a natural ordering of objects
Implementing the Comparator interface to produce additional orderings of objects
Sorting lists of objects utilizing the Comparable and Comparator interfaces
Using TreeSet to store unique objects defined by hashCode() and equals()
Accessing and referencing Java API for objects

SIS

Integration

First, we'll need to provide a natural ordering for Memes, Users, and Backgroundimages. We
will also make some updates to the classes with our new knowledge of the Java Collections
Framework.

Backgroundimage

e compareTo(BackgroundImage) - implement the Comparable interface and provide
the compareTo method that orders Backgroundimages as follows:
o First, by imageFileName (ascending)
o Then, if imageFileNames are identical, by title (ascending)
o Lastly, if imageFileNames and titles are identical, by description (ascending)

Meme

User

compareTo(Meme) - implement the Comparable interface and provide the compareTo
method that orders Memes as follows:

o First, by caption (ascending)

o Then, if captions are identical, by Backgroundimage (using its natural ordering)

o Then, if Backgroundimages are identical, by overall rating (descending)

m Note: “overall rating” is defined as the result of
calculateOverallRating().

o Lastly, if overallRatings are identical, shared memes should come first
Note: Remember that compareTo returns an int; when comparing doubles or booleans,
we'll need to return an appropriate int value.

compareTo(User) - implement the Comparable interface and provide the compareTo
method that orders Users as follows:

o First, by userName (ascending)

o Then, if userNames are identical, by the number of memes created (descending)
Encapsulation: Since we want the list of Memes viewed by the user to be unique,
replace the field (instance variable) ArrayList<Meme> memesViewed with a
TreeSet<Meme>. However, we do not want to change the interface we're providing to
other classes (encapsulation), so update the getters and setters for memesViewed to
correctly return an ArraylList instead of a TreeSet.

Notes: Please remember to update the Constructors where you instantiate
memesViewed. Also, see the Java API for the Collection interface for helpful
methods.

Implementation

We will also need some Comparators to allow us to sort Meme objects in different ways. Create
and implement the following classes that implement the Comparator interface:

CompareMemeByRating

compare(Meme, Meme) - compares two Memes and provides the following ordering:
o First, by overall rating (descending)
o Then, if overall ratings are identical, by caption (ascending)
o Then, if captions are identical, by Backgroundimage (using its natural ordering)
o Lastly, if Backgroundimages are identical, order by creator (using natural order)

CompareMemeByCreator

e compare(Meme, Meme) - compares two Memes and provides the following ordering:
o First, by creator (using User’s natural ordering)

Then, if creators are identical, by overall rating (descending)

Then, if overall ratings are identical, by caption (ascending)

Then, if captions are identical, by Backgroundimage (using its natural ordering)

Lastly, if Backgroundimages are identical, shared memes should come first

o O O O

Create a new class, OrderableFeed, that extends the Feed class and provides methods for
the sorting of Memes in the feed.

OrderableFeed

Include each of the following public sort functions in the OrderableFeed class. They should
take no parameters and return void. They will re-order the instance’s list of memes.
e sortByCaption() - reorders the feed by caption, using Meme’s natural ordering
e sortByRating() - reorders the feed by rating, using the CompareMemeByRating
comparator
e sortByCreator() - reorders the feed by creator, using the CompareMemeByCreator
comparator

Main Method Testing

In this sprint, we expect you to do your own main method testing. Although the amount of
main method testing is not limited, please provide at least two tests each for the following:
e BackgroundImage, Meme, and User’'s compareTo methods
e CompareMemeByRating and CompareMemeByCreator's compare methods
e OrderableFeed’s three sort methods
e OrderableFeed’s inherited getNewMeme method to check for ordering

Note: Your main method should have enough testing to provide sufficient evidence to
determine that the behavior implemented matches the behavior described above. It is highly
recommended to write the tests before implementation as it will help you to understand the
exact behavior and what is the expected output of different inputs.

Our goal in this assignment is to encourage main method testing so that you know your code
works well before submitting to Gradescope. Therefore, you will only be able to submit to
Gradescope a total of 10 times for this assignment.

Additional Resources

The following resources may be helpful when completing and submitting this sprint.

e JavaDoc style documentation for each of the classes and methods described above
e One example of main method testing for Feed’s getNewMeme method in
OrderableFeed after sorting

ava AP| for Collection interface, Comparable interface, Comparator interface

Video on submitting to Gradescope

Submission Information

Method and Class Naming: You must match method names, instance variable names, and data
types exactly. You must use correctly formatted Java code. Declare fields in the class definition,
and create a default constructor for each class that initializes every instance variable. For
methods that you are overriding (i.e., compare() and compareTo()), use the @0verride
annotation before the method header.

Coding Style: In real-world software development, it is paramount to create readable and
easily maintainable code. That is typically achieved through the use of style and commenting
guidelines. Since you will be updating this code over the next few weeks, we have provided a
style guide and formatting guide that we strongly encourage you to follow:

e Coding Style Guide (includes installation instructions for Eclipse)

e E[Eclipse Style File

Submitting: Upload your Eclipse project (the . java files) to the “Meme Magic 4" assignment on
Gradescope. You should submit User. java, Feed. java, Rating. java,
BackgroundImage. java, Meme. java, OrderableFeed. java,
CompareMemeByRating. java, and CompareMemeByCreator. java. This submission
utilizes an autograder to check that your code follows these specifications. If it spots an issue,
it will alert you, but you should NOT use the submission system as your testing. We encourage
you to test your code during the implementation phase. Therefore, you may upload your code
a maximum of ten (10) times.

Note: After the 10th submission, Gradescope will still allow submissions, but they will NOT be
graded by the system.

Grading Rubric

The assignment will be worth a total of 100 points:
80 points - Method and implementation correctness, auto-graded using Gradescope
15 points - Main method testing
5 points - Code readability (organized, well-indented, readable by others)

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html

Academic Integrity and Moving into Sprint 5

After submitting this sprint (and after the late submission deadline), you are encouraged to
collaborate with your group members on what you missed and you are allowed to share code
for those parts. However, everyone who collaborates must have already submitted their code
and may not resubmit to this sprint.

You must understand any code you incorporate, as you'll be using it to complete the next (and
subsequent) sprint. We will not be directly testing the code from this sprint again. You must
list your collaborators in the comment at the top of each file that has any amount of shared
code.

Meme Magic
Sprint 5 - Testing

Your development build is coming along nicely. Before you release it to your users, however,
you want to ensure the software is of good quality. To protect the reputation of your startup,
you decide to develop a set of automated tests using JUnit.

First, set up your project:

e Create a new Java project on Eclipse, and call it MemeMagich.

e Copy and import all of your MemeMagic4 files into the MemeMagich project.

e Maintain a copy of MemeMagicé files (i.e., do not overwrite them.)
Note: you may alternatively copy your project in Eclipse by selecting the MemeMagic4 project
in the Package Explorer, copy with Ctrl+c (or Command+c on mac), and paste with Ctrl+p (or
Command+p on mac). On pasting, Eclipse will ask you to name the newly-pasted project.

Next, set up your testing environment (this is important!):

e Right-click your new project in the Package Explorer and choose “New” and “Source
Folder”. For “Folder name”, type “test” and click Finish. This will provide a separate
source folder for all your JUnit tests.

e Right-click the new “test” folder in Package Explorer and choose “New” and “JUnit Test
Case”. (If it's not in the menu there, choose “Other..” and then search for “JUnit Test
Case”) This will open a window to create a new JUnit test file, and will also add JUnit to
our build path.

o Choose “New JUnit 4 test” at the top of the window, and type the Name of the
test class, such as “FeedTest” to test the Feed class. Then click Finish.
Note: you must use JUnit 4 for Gradescope to correctly run your tests.

o You should get a warning that “JUnit 4 is not on the build path. Do you want to
add it?” with the action “Add JUnit 4 library to the build path” pre-selected. Click
OK to proceed.

o That should open the new file with one test that defaults to fail. Now you're
ready to implement your own tests!

See the Getting Started with Sprint 5 video (not provided for review).

Learning Goals

In this assignment, we will practice:
1. Writing unit tests for Java using JUnit
2. Calculating code coverage of unit testing

Unit Testing Meme Magic

Write JUnit tests that provide at least 90% code coverage for your project. 90% code coverage
means that the tests confirm that 9 out of every 10 lines of written code is measured by the
test. (You are using a whitebox approach to testing!)

For each Class completed through Sprint 4, create a JUnit 4 Test named ClassTest. For
example, to test the Meme class, create the MemeTest class. (The java file for the new
MemeTest class should reside in the test/ folder.)

For each method in your classes, create a methodNameTest. For example, to test the
deleteMeme() method, create the deleteMemeTest() method.

For getter and setter methods, it is sufficient to create one method,

setAndGet VariableTest(), where Variable is the name of the field (instance variable). For
example, to test the userName field, you should write the setAndGetUserNameTest()
method, which calls both the getter and setter for userName and asserts that the value was
set correctly. For all other methods, use a separate test method to keep your tests organized.

Your code must pass your Unit tests. If it does not pass, code coverage will not be calculated
on Gradescope.

Important Information

You can confirm that your tests are evaluating all of your code using the Coverage feature in
Eclipse. Note: If you do not remove or comment out your main method tests, these may count
as lines that need to be covered.

To access the Coverage feature, with your project open, select Run, then Coverage. The menu
may vary by Eclipse version. If you don't see the Coverage option, search for coverage in help.
We encourage you to set up a Run Configuration to run all your Unit test files at once. See the
Getting Started with Sprint 5 video (not provided for review).

Code coverage is counted as a percentage of the instructions in your classes covered by your
tests. Therefore, it is important to separate the tests from the codebase. As seen in Figure 1,
we currently have only 2.8% code coverage of our classes (even though it appears we have
100% coverage of our test code and 5.3% overall coverage in the project itself).

= Outline ® Properties B

~®Homework 6 5.3%
~ &Src 2.8%
- = (default package) 2.8%

» BMeme.java 0.0 %

» BUser.java 11.5%

» BRating.java 0.0%

» B Backgroundimage.j: W 0.0 %

» BFeed.java 0.0%

» B CompareMemeByCi ¥ 0.0 %

» BCompareMemeByR:M 0.0%

» BOrderableFeed.java § 0.0 %

~ stest 100.0 %
~ u (default package) P 100.0 %

» BFeedTest.java] 100.0 %

» BUserTest.java P 100.0 %

Figure 1. Screenshot of Eclipse Code Coverage display. Shows 2.8% code coverage
of our classes, including 11.5% code coverage of the User class.

Additional Resources

The following resources may be helpful when completing and submitting this sprint.
e JavaDoc style documentation for each of the classes and methods from Sprint 4
e Video on Getting Started with Sprint 5
e Video on submitting to Gradescope

Submission Information

Method and Class Naming: You must match method names, instance variable names, and data
types exactly. You must use correctly formatted Java code. Classes to perform tests MUST have
names ending with “Test”. That is, if you want a JUnit test to run on Gradescope, it must be in
a class named SomethingTest.

Coding Style: In real-world software development, it is paramount to create readable and
easily maintainable code. That is typically achieved through the use of style and commenting
guidelines. Since you will be updating this code over the next few weeks, we have provided a
style guide and formatting guide that we strongly encourage you to follow:

e Coding Style Guide (includes installation instructions for Eclipse)

e Eclipse Style File

Submitting: Upload your Eclipse project (the . java files) to the “Meme Magic 5" assignment on
Gradescope. You should submit all your .java files from both your src/ and test/ directories.
Gradescope will calculate code coverage for your classes and use that to calculate your final
score. If your code does not compile, it cannot check for code coverage. We strongly encourage
you to run your tests locally before submitting; you should not use only Gradescope to run
your tests. Therefore, you may upload your code a maximum of ten (10) times.

Note: Gradescope’s code coverage values may differ slightly from Eclipse’s reported coverage.
We have found Gradescope to be slightly higher in most cases.

Remember: After the 10th submission, Gradescope will still allow submissions, but they will NOT
be graded by the system.

Grading Rubric

Your score will be determined by lines of code coverage. The assignment will be worth a total
of 100 points:
90 points - Code coverage, proportional to the amount of code coverage
50% coverage or less = 0 points -- up to -- 90% coverage or more = 90 points
10 points - Code readability (organized, well-indented, readable by others)

Meme Magic
Sprint 6 - Feature Add 2

Your team is ready to expand the text-based memes into image-based memes. It's time to
create the GUI for the Meme Magic application.

First, set up your project:

e C(Create a new Java project on Eclipse, and call it MemeMagicé.

e Copy and import all of your MemeMagic5 (or MemeMagic4) files into the MemeMagic6
project. (Remember the Academic Integrity policy from the end of MemeMagic4 - you
are free to share your MemeMagic4 code with your group members and use
MemeMagic5 code from your group members as long as you understand any code you
include.)

e Maintain a copy of MemeMagic5 (or MemeMagic4) files (i.e., do not overwrite them.)
Note: you may alternatively copy your project in Eclipse by selecting the MemeMagic5 project
in the Package Explorer, copy with Ctrl+c (or Command+c on mac), and paste with Ctrl+p (or
Command+p on mac). On pasting, Eclipse will ask you to name the newly-pasted project.

For this assignment, we've provided a few implementations to start the process:
e Download our GraphicalMeme. java file and add it to your project. It extends your
Meme class.
e Download our MemeMagic. java file and add it to your project. It provides a skeleton
of the GUI for Meme Magic. Try it out! (It should look similar to Figure 1.)

Learning Goals

In this assignment, we will practice:
1. Implementing graphical user interfaces (GUIs) using event-driven programming
2. Organizing GUI content using Java Swing containers and components
3. Handling Exceptions with try/catch blocks

Implementing the Graphical User Interface

Let's get started. Open the MemeMagic. java file that we provided and run it. If everything is
working correctly you should see the following screen (Figure 1).

0 e Meme Magic
Background Image

Filename: Browse | <choose>

Figure 1: Screenshot of the initial (scaffolding) interface of Meme Magic (in macOS).

When we're done your design should look like this (Figure 2).

Meme Magic

Background Image
Filename: /ducks.jpg
Title: \Ducks intreducing sprint 6 |
Description: ‘Ducks swimming up announcing the arrival of sprint 6 |
Meme
Caption: ‘When sprint 6 arrives |
Vertical Align: [bottom [~]
WHEN SPRINT 6 ARRIVES

Figure 2: Screenshot of the Meme Magic application once it is fully implemented (in Linux).
Photo Credit: John R. Hott

Implementing the Backgroundimage JPanel

We'll begin by adding the Title and Description fields to the backgroundImagePanel. Take a

Look at the skeleton code in the MemeMagic. java file. We've implemented the first row as an
example.

Background Image

Filename: Browse <choose> «—— BackgroundimagePanel
JLabel Title:
Description: +«————JTextField

Figure 3: GUI elements on the Backgroundimage JPanel.

Adds the following to backgroundImagePanel:
1. AJLabel that shows the text value: “Title"
2. A JTextField that allows the user to enter the title they want.
3. AJLabel that shows the text value: “Description”
4. A TextField that allows the user to enter the description they want.

Hint: Remember to group the JLabel and JTextField in a JPanel so that they all line up on one
line.

Connect the OpenButtonListener Listener

Now let's implement the feature that allows the user to click the Browse button and open file
explorer dialog. We've implemented that functionally for you, but you will need to connect the
OpenButtonListener in the MemeMagic. java file to the browse button by adding it as an
action listener.

Implementing the Meme JPanel

Meme

Caption:

Vertical Align: top (]

JComboBox
Figure 4: Close-up view of the Meme JPanel.
This panel (Figure 4) includes a component that allows a user to select items from a dropdown

list. You can implement this component using a JComboBox. For examples on how to use the
JComboBox and other Swing components, visit this link: Helpful GUI examples in Swing. The

https://web.mit.edu/6.005/www/sp14/psets/ps4/java-6-tutorial/components.html

nou

combo box should have three options: “top”, “middle”, or “bottom”. This element will allow the
user to indicate where the caption will be placed on the image.

Add the Meme JPanel to the JPanel called controlPanel. See Figure 5 below.

(] @® Meme Magic
| Background Image

Filename: Browse <choose>

panelPane

memeViewPanel

controlPanel

Figure 5: Nesting JPanels like this allows us to structure the layout of the screen.

Implementing the Generate and Save Buttons

Provide the user with a Generate button to create and display the GraphicalMeme into the
imageDisplaylabel. Add a listener to the button so that when the button is clicked, the
following actions are taken:
e You can call the getText () method to JTextField variable to get the text.
o Forexample, String text = ExampleCaptionTextField.getText();
e Instantiate a GraphicalMeme object (it extends your Meme class) with the caption,
alignment, and background image information provided by the user in the GUI interface.
e Use GraphicalMeme's compileMeme() method to compile the Meme into a
BufferedImage (image data) and display the graphical version of the meme on the
provided imageDisplayLabel.
o Catch any exceptions that might be thrown from the compileMeme() method.
o TheJava APl for ImageIcon and JLabel and our Pineapple Pizza Example on
Collab provide resources for how to display an image on a label.

o Note: You will need to repaint() the memeViewPanel for the image to
display.

Add a Save button that opens a save dialog box, calls the compileMeme() method, and writes
the image to a file. We have included a listener (SaveButtonListener) that opens the save
dialog box and gets the chosen destination filename.

e Modify the listener to include the commented-out ImageIO.write() call and handle
any exceptions that might be thrown. If an exception occurs, provide the user with an
appropriate (and detailed) message of what went wrong, either by printing a message
to System.err or displaying the message in a new GUI dialog box.

o The Java API for ImageIO and File and our documentation for
GraphicalMeme provide information about which exceptions may be thrown.

Additional Resources

The following resources may be helpful when completing and submitting this sprint.
e JavaDoc style documentation for each of the classes and methods from Sprint 4
e Video on submitting to Gradescope
e Java APl Documentation for

Imagelcon

ImagelO

File

Label
e Helpful GUl examples in Swing

o O O O

Submission Information

Coding Style: In real-world software development, it is important to write readable and
maintainable code. That is typically achieved through the use of style and commenting
guidelines. We have provided a style guide and formatting guide that we strongly encourage
you to follow:

e Coding Style Guide (includes installation instructions for Eclipse)

e Eclipse Style File

Submitting Code: Upload your Eclipse project (the . java files) to the “Meme Magic 6"
assignment on Gradescope. You should submit at least User. java, Rating. java,
BackgroundImage. java, Meme. java, GraphicalMeme. java, and MemeMagic. java.

Submitting Demonstration: Create a short 2-5 minute screen recording demoing your
implementation. If you didn’t get everything working, that's okay, please show us what you
have working and let us know what's missing.
e This video should start by briefly (1-2 minutes max) describing your code: walking
through what MemeMagic.java does, what graphical elements you used, and any
listeners you created.

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/ImageIcon.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/imageio/ImageIO.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/File.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/JLabel.html
https://web.mit.edu/6.005/www/sp14/psets/ps4/java-6-tutorial/components.html

e Then, you should run your code to open a MemeMagic window, fill out the fields, and
generate a Meme. It can be as funny as you'd like, but please keep it clean. CS-related
memes are highly appreciated!

e Use the save button to save your Meme, then open up the created image to show us
that your meme saved successfully

e lastly, close and restart the MemeMagic application and show us your error or
Exception handling (display a scenario when one of the try-catch blocks would catch an
Exception).

Save and name your video with your name, such as last-first.mp4. You can use Zoom to
perform the recording, but we ask you to rename your video afterwards. Upload your video to
the following link: [insert here]

Note: Please keep a copy of your video just in case.

Optional: Post your generated Meme to the class’ “memes” channel (or post).

Grading Rubric

The assignment will be worth a total of 100 points:
40 points - Graphical interface with all required elements (with video demo)
20 points - Event listeners for generating and saving memes (with video demo)
20 points - Exception handling and appropriate error messages (with video demo)
20 points - Code readability (organized, well-indented, readable by others)

Where to go from here?

Well, the Meme Magic assignments are done, but the creativity isn't! There are many ways to
continue expanding your Meme Magic system. You could customize the look and feel of the
memes, provide options to your users when generating them, split the text around the image,
build-in services to allow posting to social media, and more! The possibilities are (almost)
endless!

We only ask that you do not post your source code publicly (at least without significant
changes), since we may use these assignments again in the future.

