
Meme Magic
Sprint 6 - Feature Add 2

Your team is ready to expand the text-based memes into image-based memes. It’s time to
create the GUI for the Meme Magic application.

First, set up your project:
● Create a new Java project on Eclipse, and call it MemeMagic6.
● Copy and import all of your MemeMagic5 (or MemeMagic4) files into the MemeMagic6

project. (Remember the Academic Integrity policy from the end of MemeMagic4 - you
are free to share your MemeMagic4 code with your group members and use
MemeMagic5 code from your group members as long as you understand any code you
include.)

● Maintain a copy of MemeMagic5 (or MemeMagic4) files (i.e., do not overwrite them.)
Note: you may alternatively copy your project in Eclipse by selecting the MemeMagic5 project
in the Package Explorer, copy with Ctrl+c (or Command+c on mac), and paste with Ctrl+p (or
Command+p on mac). On pasting, Eclipse will ask you to name the newly-pasted project.

For this assignment, we’ve provided a few implementations to start the process:
● Download our GraphicalMeme.java file and add it to your project. It extends your

Meme class.
● Download our MemeMagic.java file and add it to your project. It provides a skeleton

of the GUI for Meme Magic. Try it out! (It should look similar to Figure 1.)

Learning Goals
In this assignment, we will practice:

1. Implementing graphical user interfaces (GUIs) using event-driven programming
2. Organizing GUI content using Java Swing containers and components
3. Handling Exceptions with try/catch blocks

Implementing the Graphical User Interface
Let’s get started. Open the MemeMagic.java file that we provided and run it. If everything is
working correctly you should see the following screen (Figure 1).

Figure 1: Screenshot of the initial (scaffolding) interface of Meme Magic (in macOS).

When we’re done your design should look like this (Figure 2).

Figure 2: Screenshot of the Meme Magic application once it is fully implemented (in Linux).
Photo Credit: John R. Hott

Implementing the BackgroundImage JPanel
We'll begin by adding the Title and Description fields to the backgroundImagePanel. Take a
Look at the skeleton code in the MemeMagic.java file. We’ve implemented the first row as an
example.

Figure 3: GUI elements on the BackgroundImage JPanel.

Adds the following to backgroundImagePanel:
1. A JLabel that shows the text value: “Title”
2. A JTextField that allows the user to enter the title they want.
3. A JLabel that shows the text value: “Description”
4. A JTextField that allows the user to enter the description they want.

Hint: Remember to group the JLabel and JTextField in a JPanel so that they all line up on one
line.

Connect the OpenButtonListener Listener
Now let’s implement the feature that allows the user to click the Browse button and open file
explorer dialog. We’ve implemented that functionally for you, but you will need to connect the
OpenButtonListener in the MemeMagic.java file to the browse button by adding it as an
action listener.

Implementing the Meme JPanel

Figure 4: Close-up view of the Meme JPanel.

This panel (Figure 4) includes a component that allows a user to select items from a dropdown
list. You can implement this component using a JComboBox. For examples on how to use the
JComboBox and other Swing components, visit this link: Helpful GUI examples in Swing. The

https://web.mit.edu/6.005/www/sp14/psets/ps4/java-6-tutorial/components.html

combo box should have three options: “top”, “middle”, or “bottom”. This element will allow the
user to indicate where the caption will be placed on the image.

Add the Meme JPanel to the JPanel called controlPanel. See Figure 5 below.

Figure 5: Nesting JPanels like this allows us to structure the layout of the screen.

Implementing the Generate and Save Buttons
Provide the user with a Generate button to create and display the GraphicalMeme into the
imageDisplayLabel. Add a listener to the button so that when the button is clicked, the
following actions are taken:

● You can call the getText() method to JTextField variable to get the text.
○ For example, String text = ExampleCaptionTextField.getText();

● Instantiate a GraphicalMeme object (it extends your Meme class) with the caption,
alignment, and background image information provided by the user in the GUI interface.

● Use GraphicalMeme’s compileMeme() method to compile the Meme into a
BufferedImage (image data) and display the graphical version of the meme on the
provided imageDisplayLabel.

○ Catch any exceptions that might be thrown from the compileMeme() method.
○ The Java API for ImageIcon and JLabel and our Pineapple Pizza Example on

Collab provide resources for how to display an image on a label.

○ Note: You will need to repaint() the memeViewPanel for the image to
display.

Add a Save button that opens a save dialog box, calls the compileMeme() method, and writes
the image to a file. We have included a listener (SaveButtonListener) that opens the save
dialog box and gets the chosen destination filename.

● Modify the listener to include the commented-out ImageIO.write() call and handle
any exceptions that might be thrown. If an exception occurs, provide the user with an
appropriate (and detailed) message of what went wrong, either by printing a message
to System.err or displaying the message in a new GUI dialog box.

○ The Java API for ImageIO and File and our documentation for
GraphicalMeme provide information about which exceptions may be thrown.

Additional Resources
The following resources may be helpful when completing and submitting this sprint.

● JavaDoc style documentation for each of the classes and methods from Sprint 4
● Video on submitting to Gradescope
● Java API Documentation for

○ ImageIcon
○ ImageIO
○ File
○ JLabel

● Helpful GUI examples in Swing

Submission Information
Coding Style: In real-world software development, it is important to write readable and
maintainable code. That is typically achieved through the use of style and commenting
guidelines. We have provided a style guide and formatting guide that we strongly encourage
you to follow:

● Coding Style Guide (includes installation instructions for Eclipse)
● Eclipse Style File

Submitting Code: Upload your Eclipse project (the .java files) to the “Meme Magic 6”
assignment on Gradescope. You should submit at least User.java, Rating.java,
BackgroundImage.java, Meme.java, GraphicalMeme.java, and MemeMagic.java.

Submitting Demonstration: Create a short 2-5 minute screen recording demoing your
implementation. If you didn’t get everything working, that’s okay, please show us what you
have working and let us know what’s missing.

● This video should start by briefly (1-2 minutes max) describing your code: walking
through what MemeMagic.java does, what graphical elements you used, and any
listeners you created.

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/ImageIcon.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/imageio/ImageIO.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/File.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/JLabel.html
https://web.mit.edu/6.005/www/sp14/psets/ps4/java-6-tutorial/components.html

● Then, you should run your code to open a MemeMagic window, fill out the fields, and
generate a Meme. It can be as funny as you’d like, but please keep it clean. CS-related
memes are highly appreciated!

● Use the save button to save your Meme, then open up the created image to show us
that your meme saved successfully

● Lastly, close and restart the MemeMagic application and show us your error or
Exception handling (display a scenario when one of the try-catch blocks would catch an
Exception).

Save and name your video with your name, such as last-first.mp4. You can use Zoom to
perform the recording, but we ask you to rename your video afterwards. Upload your video to
the following link: [insert here]

Note: Please keep a copy of your video just in case.

Optional: Post your generated Meme to the class’ “memes” channel (or post).

Grading Rubric
The assignment will be worth a total of 100 points:

40 points - Graphical interface with all required elements (with video demo)
20 points - Event listeners for generating and saving memes (with video demo)
20 points - Exception handling and appropriate error messages (with video demo)
20 points - Code readability (organized, well-indented, readable by others)

Where to go from here?
Well, the Meme Magic assignments are done, but the creativity isn’t! There are many ways to
continue expanding your Meme Magic system. You could customize the look and feel of the
memes, provide options to your users when generating them, split the text around the image,
build-in services to allow posting to social media, and more! The possibilities are (almost)
endless!

We only ask that you do not post your source code publicly (at least without significant
changes), since we may use these assignments again in the future.

