Meme Magic
Sprint 4 - Feature Add 1

Your users have asked for their first additional feature. They love the Meme Magic system so
far, but they would really like the ability to sort Memes in their Feeds.

First, set up your project:

e C(Create a new Java project on Eclipse, and call it MemeMagicé.

e Copy and import all of your MemeMagic3 files into the MemeMagic4 project.

e Maintain a copy of MemeMagic3 files (i.e., do not overwrite them.)
Note: you may alternatively copy your project in Eclipse by selecting the MemeMagic3 project
in the Package Explorer, copy with Ctrl+c (or Command+c on mac), and paste with Ctrl+p (or
Command+p on mac). On pasting, Eclipse will ask you to name the newly-pasted project.

Learning Goals

In this assignment, we will practice:

1. Implementing the Comparable interface to produce a natural ordering of objects
Implementing the Comparator interface to produce additional orderings of objects
Sorting lists of objects utilizing the Comparable and Comparator interfaces
Using TreeSet to store unique objects defined by hashCode() and equals()
Accessing and referencing Java API for objects

SIS

Integration

First, we'll need to provide a natural ordering for Memes, Users, and Backgroundimages. We
will also make some updates to the classes with our new knowledge of the Java Collections
Framework.

Backgroundimage

e compareTo(BackgroundImage) - implement the Comparable interface and provide
the compareTo method that orders Backgroundimages as follows:
o First, by imageFileName (ascending)
o Then, if imageFileNames are identical, by title (ascending)
o Lastly, if imageFileNames and titles are identical, by description (ascending)

Meme

User

compareTo(Meme) - implement the Comparable interface and provide the compareTo
method that orders Memes as follows:

o First, by caption (ascending)

o Then, if captions are identical, by Backgroundimage (using its natural ordering)

o Then, if Backgroundimages are identical, by overall rating (descending)

m Note: “overall rating” is defined as the result of
calculateOverallRating().

o Lastly, if overallRatings are identical, shared memes should come first
Note: Remember that compareTo returns an int; when comparing doubles or booleans,
we'll need to return an appropriate int value.

compareTo(User) - implement the Comparable interface and provide the compareTo
method that orders Users as follows:

o First, by userName (ascending)

o Then, if userNames are identical, by the number of memes created (descending)
Encapsulation: Since we want the list of Memes viewed by the user to be unique,
replace the field (instance variable) ArrayList<Meme> memesViewed with a
TreeSet<Meme>. However, we do not want to change the interface we're providing to
other classes (encapsulation), so update the getters and setters for memesViewed to
correctly return an ArraylList instead of a TreeSet.

Notes: Please remember to update the Constructors where you instantiate
memesViewed. Also, see the Java API for the Collection interface for helpful
methods.

Implementation

We will also need some Comparators to allow us to sort Meme objects in different ways. Create
and implement the following classes that implement the Comparator interface:

CompareMemeByRating

compare(Meme, Meme) - compares two Memes and provides the following ordering:
o First, by overall rating (descending)
o Then, if overall ratings are identical, by caption (ascending)
o Then, if captions are identical, by Backgroundimage (using its natural ordering)
o Lastly, if Backgroundimages are identical, order by creator (using natural order)

CompareMemeByCreator

e compare(Meme, Meme) - compares two Memes and provides the following ordering:
o First, by creator (using User’s natural ordering)

Then, if creators are identical, by overall rating (descending)

Then, if overall ratings are identical, by caption (ascending)

Then, if captions are identical, by Backgroundimage (using its natural ordering)

Lastly, if Backgroundimages are identical, shared memes should come first

o O O O

Create a new class, OrderableFeed, that extends the Feed class and provides methods for
the sorting of Memes in the feed.

OrderableFeed

Include each of the following public sort functions in the OrderableFeed class. They should
take no parameters and return void. They will re-order the instance’s list of memes.
e sortByCaption() - reorders the feed by caption, using Meme’s natural ordering
e sortByRating() - reorders the feed by rating, using the CompareMemeByRating
comparator
e sortByCreator() - reorders the feed by creator, using the CompareMemeByCreator
comparator

Main Method Testing

In this sprint, we expect you to do your own main method testing. Although the amount of
main method testing is not limited, please provide at least two tests each for the following:
e BackgroundImage, Meme, and User’'s compareTo methods
e CompareMemeByRating and CompareMemeByCreator's compare methods
e OrderableFeed’s three sort methods
e OrderableFeed’s inherited getNewMeme method to check for ordering

Note: Your main method should have enough testing to provide sufficient evidence to
determine that the behavior implemented matches the behavior described above. It is highly
recommended to write the tests before implementation as it will help you to understand the
exact behavior and what is the expected output of different inputs.

Our goal in this assignment is to encourage main method testing so that you know your code
works well before submitting to Gradescope. Therefore, you will only be able to submit to
Gradescope a total of 10 times for this assignment.

Additional Resources

The following resources may be helpful when completing and submitting this sprint.

e JavaDoc style documentation for each of the classes and methods described above
e One example of main method testing for Feed’s getNewMeme method in
OrderableFeed after sorting

ava AP| for Collection interface, Comparable interface, Comparator interface

Video on submitting to Gradescope

Submission Information

Method and Class Naming: You must match method names, instance variable names, and data
types exactly. You must use correctly formatted Java code. Declare fields in the class definition,
and create a default constructor for each class that initializes every instance variable. For
methods that you are overriding (i.e., compare() and compareTo()), use the @0verride
annotation before the method header.

Coding Style: In real-world software development, it is paramount to create readable and
easily maintainable code. That is typically achieved through the use of style and commenting
guidelines. Since you will be updating this code over the next few weeks, we have provided a
style guide and formatting guide that we strongly encourage you to follow:

e Coding Style Guide (includes installation instructions for Eclipse)

e E[Eclipse Style File

Submitting: Upload your Eclipse project (the . java files) to the “Meme Magic 4" assignment on
Gradescope. You should submit User. java, Feed. java, Rating. java,
BackgroundImage. java, Meme. java, OrderableFeed. java,
CompareMemeByRating. java, and CompareMemeByCreator. java. This submission
utilizes an autograder to check that your code follows these specifications. If it spots an issue,
it will alert you, but you should NOT use the submission system as your testing. We encourage
you to test your code during the implementation phase. Therefore, you may upload your code
a maximum of ten (10) times.

Note: After the 10th submission, Gradescope will still allow submissions, but they will NOT be
graded by the system.

Grading Rubric

The assignment will be worth a total of 100 points:
80 points - Method and implementation correctness, auto-graded using Gradescope
15 points - Main method testing
5 points - Code readability (organized, well-indented, readable by others)

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Comparator.html

Academic Integrity and Moving into Sprint 5

After submitting this sprint (and after the late submission deadline), you are encouraged to
collaborate with your group members on what you missed and you are allowed to share code
for those parts. However, everyone who collaborates must have already submitted their code
and may not resubmit to this sprint.

You must understand any code you incorporate, as you'll be using it to complete the next (and
subsequent) sprint. We will not be directly testing the code from this sprint again. You must
list your collaborators in the comment at the top of each file that has any amount of shared
code.

