Meme Magic
Sprint 3 - Build 2

You are proud of your team, they are making great progress. We will continue the building of
the system in sprint 2. This sprint will include the User and Feed classes, along with some
integration tasks.

First, set up your project:

e C(Create a new Java project on Eclipse, and call it MemeMagic3.

e Copy all of your MemeMagic?2 files into the MemeMagic3 project.

e Maintain a copy of MemeMagic?2 files (i.e., do not overwrite them.)
Note: you may alternatively copy your project in Eclipse by selecting the MemeMagic2 project
in the Package Explorer, copy with Ctrl+c (or Command+c on mac), and paste with Ctrl+p (or
Command+p on mac). On pasting, Eclipse will ask you to name the newly-pasted project.

Learning Goals

In this assignment, we will practice:
1. Utilizing ArraylList to store and organize objects
2. Integrating newly implemented classes into an existing codebase
3. Incorporating main-method testing to check correctness (i.e., behavior matches
specifications)

Implementation

Implement methods for the classes as described below. When creating a constructor, if a class
has more fields than specified in the constructor, initialize these fields with default values.

User

e create a constructor that accepts a String for userName
e toString() - returns "username has rated (number of memes viewed) memes,
(reputation)"
o Note: the reputation should be rounded to 1 decimal place.
o ex:
derrickstone has rated (10) memes, (9.0)
e cquals(Object) - returns true if the parameter is a User object and this User’s
userName is equal to that of the parameter.

Feed

rateMeme(Meme, int) - this method accepts a Meme argument and an int for
rating score. It will record that Meme as having been seen by this user (nemesViewed)
and give it a Rating of this score.

rateNextMemeFromFeed(Feed, int) - this method accepts a feed argument and
an int for rating score and returns a boolean. The method will get a Meme from the
Feed (supplied as an argument) using the getNewMeme (User) method of the Feed
class. It will record that Meme as having been viewed by the user, give it the rating score,
and return true. If there are no Memes left to view, the method should return false (and
should not throw an error).

Note: the return type has been updated from Sprint 1to return a boolean.
createMeme(BackgroundImage, String) - creates a new Meme object using the
supplied arguments (String is the caption) and with the current user set as the
creator. This method will add the resulting Meme to the list of createdMemes for the
current user.

deleteMeme(Meme) - deletes this Meme if found in the memesCreated field for the
current user, only if the shared field is false. (Because anything shared on the Internet
lives forever.) If the deletion was successful, return true. Otherwise, return false.
shareMeme(Meme, Feed) - marks that Meme as shared (sets the shared field to true)
and copies it to the ArrayList<Meme> data structure on the supplied Feed.
calculateReputation() - returns a value calculated as the average of all overall
ratings (caclulateOverallRating()) for Memes created by this User. If the user
has not created any Memes or had any Memes rated, @.0 should be returned.

getNewMeme(User) - return a Meme from the current Feed that the User has not
seen (does not exist in that User's memesViewed list) and that the User did not
create themselves. If there is no Meme to return, return null.
toString() - returns all the memes in the feed, each Meme on a new line. Note that
the toString() methods for both Meme and Rating need to be updated to integrate
with the User and Feed implementation.
o Ex
How bots laugh <Image of Joquain Phoenix in his role as Joker, laughing
maniacally> 'When your professor calls an in person meeting at 9 AM EST and
you live in Cali' 5.0 [+1: 6, -1: 1] - created by derrickstone
Too sad <Image of tearful Ritten> 'When you laugh at insistence on comments in
school and then get a job programming where nobody comments' -2.0 [+1: 4, -1:
6] - created by derrickstone
Robots Eating <Robots seated at table with server> 'When you go out for a byte'
1.0 [+1: 3, -1: 2] - created by user01001011

Integration

Now that you have implemented the User class, we must integrate it into the previously-built
portions of the system. Using the following specifications, update these methods of the Meme
and Rating classes.

Meme

e toString() - returns "backgroundimage ‘caption' overallRating [+1: the number of +1
ratings, -1: the number of -1 ratings] - created by userName"

o ex
How bots laugh <Image of Joquain Phoenix in his role as JoRer, laughing
maniacally> 'When your professor calls an in person meeting at 9 AM EST and
you live in Cali' 5.0 [+1: 6, -1: 1] - created by derrickstone

o Note: overallRating is the value returned by calculateOverallRating().

o Note: userName is the userName of the creator User.

o Hint: there is a lot going on in this string. Consider how additional private helper
methods might make this easier to read.

Rating

e toString() - returns "userName rated as type_of_rating"
o For example, if the user object has userName derrickstone:
m if the score is +1, then it will return: derrickstone rated as an upvote
m if the score is -1, then it will return: derrickstone rated as a downvote
m if the score is O, then it will return: derrickstone rated as a pass

Main Method Testing

In this sprint, we expect you to do your own main method testing. Although the amount of

main method testing is not limited, please provide at least two tests each for the following:
e The new constructor we've asked for in this sprint (User)

User, Feed, Meme, and Rating’s toString() methods

User's equals() method

Feed's getNewMeme()

User's rateMeme()

User's rateNextMemeFromFeed()
User's createMeme()

User's deleteMeme()

User's shareMeme()

User's calculateReputation()

Note: Your main method should have enough testing to provide sufficient evidence to
determine that the behavior implemented matches the behavior described above. It is highly
recommended to write the tests before implementation as it will help you to understand the
exact behavior and what is the expected output of different inputs. That will be especially
important for corner cases, such as deleting a shared meme in deleteMeme() or getting the

next meme from an empty feed in rateNextMemeFromFeed().

You will only be able to submit to Gradescope a total of 10 times for this assignment; please
test your code’s functionality with main method testing before submitting.

Additional Resources

The following resources may be helpful when completing and submitting this sprint.
e JavaDoc style documentation for each of the classes and methods described above
e Video on submitting to Gradescope
e The following code will print the string 5.0
System.out.println(String.format("%.1f", 4.999999));

Submission Information

Method and Class Naming: You must match method names, instance variable names, and data
types exactly. You must use correctly formatted Java code. Declare fields in the class definition,
and create a default constructor for each class that initializes every instance variable. For
methods that you are overriding (i.e., equals() and toString()), use the @0verride
annotation before the method header.

Coding Style: In real-world software development, it is paramount to create readable and
easily maintainable code. That is typically achieved through the use of style and commenting
guidelines. Since you will be updating this code over the next few weeks, we have provided a
style guide and formatting guide that we strongly encourage you to follow:

e Coding Style Guide (includes installation instructions for Eclipse)

e Eclipse Style File

Submitting: Upload your Eclipse project (the . java files) to the “Meme Magic 3" assignment
on Gradescope. You should submit User. java, Feed. java, Rating. java,
BackgroundImage. java, and Meme. java. This submission utilizes an autograder to check
that your code follows these specifications. If it spots a disconnect or bug, it will alert you, but
you should NOT use the submission system as your testing. Testing should be done during the
implementation phase. Therefore, for this assignment, you may upload your code a maximum
of ten (10) times.

Note: After the 10th submission, Gradescope will still allow submissions, but they will NOT be
graded by the system.

Grading Rubric

The assignment will be worth a total of 100 points:
80 points - Method and implementation correctness, auto-graded using Gradescope
15 points - Main method testing
5 points - Code readability (organized, well-indented, readable by others)

Academic Integrity and Moving into Sprint 4

After submitting this sprint (and after the late submission deadline), you are encouraged to
collaborate with your group members on what you missed and you are allowed to share code
for those parts. However, everyone who collaborates must have already submitted their code
and may not resubmit to this sprint.

You must understand any code you incorporate, as you'll be using it to complete the next (and
subsequent) sprint. We will not be directly testing the code from this sprint again. You must
list your collaborators in the comment at the top of each file that has any amount of shared
code.

