
Meme Magic
Sprint 5 - Testing

Your development build is coming along nicely. Before you release it to your users, however,
you want to ensure the software is of good quality. To protect the reputation of your startup,
you decide to develop a set of automated tests using JUnit.

First, set up your project:
● Create a new Java project on Eclipse, and call it MemeMagic5.
● Copy and import all of your MemeMagic4 files into the MemeMagic5 project.
● Maintain a copy of MemeMagic4 files (i.e., do not overwrite them.)

Note: you may alternatively copy your project in Eclipse by selecting the MemeMagic4 project
in the Package Explorer, copy with Ctrl+c (or Command+c on mac), and paste with Ctrl+p (or
Command+p on mac). On pasting, Eclipse will ask you to name the newly-pasted project.

Next, set up your testing environment (this is important!):
● Right-click your new project in the Package Explorer and choose “New” and “Source

Folder”. For “Folder name”, type “test” and click Finish. This will provide a separate
source folder for all your JUnit tests.

● Right-click the new “test” folder in Package Explorer and choose “New” and “JUnit Test
Case”. (If it’s not in the menu there, choose “Other…” and then search for “JUnit Test
Case”.) This will open a window to create a new JUnit test file, and will also add JUnit to
our build path.

○ Choose “New JUnit 4 test” at the top of the window, and type the Name of the
test class, such as “FeedTest” to test the Feed class. Then click Finish.
Note: you must use JUnit 4 for Gradescope to correctly run your tests.

○ You should get a warning that “JUnit 4 is not on the build path. Do you want to
add it?” with the action “Add JUnit 4 library to the build path” pre-selected. Click
OK to proceed.

○ That should open the new file with one test that defaults to fail. Now you’re
ready to implement your own tests!

See the Getting Started with Sprint 5 video (not provided for review).

Learning Goals
In this assignment, we will practice:

1. Writing unit tests for Java using JUnit
2. Calculating code coverage of unit testing

Unit Testing Meme Magic
Write JUnit tests that provide at least 90% code coverage for your project. 90% code coverage
means that the tests confirm that 9 out of every 10 lines of written code is measured by the
test. (You are using a whitebox approach to testing!)

For each Class completed through Sprint 4, create a JUnit 4 Test named ClassTest. For
example, to test the Meme class, create the MemeTest class. (The .java file for the new
MemeTest class should reside in the test/ folder.)

For each method in your classes, create a methodNameTest. For example, to test the
deleteMeme() method, create the deleteMemeTest() method.

For getter and setter methods, it is sufficient to create one method,
setAndGetVariableTest(), where Variable is the name of the field (instance variable). For
example, to test the userName field, you should write the setAndGetUserNameTest()
method, which calls both the getter and setter for userName and asserts that the value was
set correctly. For all other methods, use a separate test method to keep your tests organized.

Your code must pass your Unit tests. If it does not pass, code coverage will not be calculated
on Gradescope.

Important Information
You can confirm that your tests are evaluating all of your code using the Coverage feature in
Eclipse. Note: If you do not remove or comment out your main method tests, these may count
as lines that need to be covered.

To access the Coverage feature, with your project open, select Run, then Coverage. The menu
may vary by Eclipse version. If you don't see the Coverage option, search for coverage in help.
We encourage you to set up a Run Configuration to run all your Unit test files at once. See the
Getting Started with Sprint 5 video (not provided for review).

Code coverage is counted as a percentage of the instructions in your classes covered by your
tests. Therefore, it is important to separate the tests from the codebase. As seen in Figure 1,
we currently have only 2.8% code coverage of our classes (even though it appears we have
100% coverage of our test code and 5.3% overall coverage in the project itself).

Figure 1. Screenshot of Eclipse Code Coverage display. Shows 2.8% code coverage
of our classes, including 11.5% code coverage of the User class.

Additional Resources
The following resources may be helpful when completing and submitting this sprint.

● JavaDoc style documentation for each of the classes and methods from Sprint 4
● Video on Getting Started with Sprint 5
● Video on submitting to Gradescope

Submission Information
Method and Class Naming: You must match method names, instance variable names, and data
types exactly. You must use correctly formatted Java code. Classes to perform tests MUST have
names ending with “Test”. That is, if you want a JUnit test to run on Gradescope, it must be in
a class named SomethingTest.

Coding Style: In real-world software development, it is paramount to create readable and
easily maintainable code. That is typically achieved through the use of style and commenting
guidelines. Since you will be updating this code over the next few weeks, we have provided a
style guide and formatting guide that we strongly encourage you to follow:

● Coding Style Guide (includes installation instructions for Eclipse)
● Eclipse Style File

Submitting: Upload your Eclipse project (the .java files) to the “Meme Magic 5” assignment on
Gradescope. You should submit all your .java files from both your src/ and test/ directories.
Gradescope will calculate code coverage for your classes and use that to calculate your final
score. If your code does not compile, it cannot check for code coverage. We strongly encourage
you to run your tests locally before submitting; you should not use only Gradescope to run
your tests. Therefore, you may upload your code a maximum of ten (10) times.

Note: Gradescope’s code coverage values may differ slightly from Eclipse’s reported coverage.
We have found Gradescope to be slightly higher in most cases.

Remember: After the 10th submission, Gradescope will still allow submissions, but they will NOT
be graded by the system.

Grading Rubric
Your score will be determined by lines of code coverage. The assignment will be worth a total
of 100 points:

90 points - Code coverage, proportional to the amount of code coverage
50% coverage or less = 0 points -- up to -- 90% coverage or more = 90 points

10 points - Code readability (organized, well-indented, readable by others)

