
. .
Fall 2015 Computational Art Zoë Wood
. .

1 Lab 4 - Generative Art

Goals

The goals for this lab are:

1. Practice using a loop control structure to generate patterns/scenes

2. Practice using functions to re-draw parts of a scene

3. Practice using random to produce desirable colors and design layout

4. Practic using structured layout

5. Consider the role of repetition in art

Modality

Individual

Overview

Generative art: “refers to art that in whole or in part has been created
with the use of an autonomous system. An autonomous system in this
context is generally one that is non-human and can independently determine
features of an artwork that would otherwise require decisions made directly
by the artist. In some cases the human creator may claim that the generative
system represents their own artistic idea, and in others that the system takes
on the role of the creator.” 1

We will be comparing the use of a more structured design (with yourself
as the artist in control of exactly where elements are placed) and a more
random generative algorithm that uses stratified sampling but mostly just
draws elements randomly in a scene.

1Wikipedia

1

“Lab 4 - Generative Art Using Loops” by Zoë Wood is licensed under CC BY-NC-SA. Accessed from www.engage-csedu.org.



Details

Task: You must create two different images using Processing each of which
are generated by an algorithm when your program is run. Each of the two
different scenes must use repetition (that is, some visual elements that are
repeated, but that may be slightly different). One sketch should be more
organic looking and the other must be more structured (intentionally laid
out/designed). Your project must:

• include two different sketch elements (one for each sketch) that is en-
capsulated in two different functions (one which is organic looking and
one which is more structured). These elements should not be exact
copies, for example the color of each item can be different, the scale
and placement (rotation) may also vary. Be sure to use code (function
parameters) to control these aspects of this part of your sketch(es).

• repeated copies of these sketch elements - one which is random (or-
ganic) and one which is structured (for example, consider an urban
city skyline, a fake ’microchip’, farm or forest).

• each of your scenes must include at least 10 copies of the repeated
element

• each element must be a compound shape (for the structured shape it
must be composed of at least 2 shapes that when combined form a
recognized whole (i.e. building or tree) for the organic shape, it must
be composed of at least 3 shape elements or a shape with at least 10
vertices - this shape also must be recognizably interesting). At least
two elements of each shape must vary when drawn (ie color, scale,
rotation, etc.)

• be at least 400 x 400

• be in color

• use random appropriately

To complete this lab, you must:

• Note that you are allowed to create this lab with noLoop() enabled in
setup() to not create distracting variance by using random for every
frame.

• first design an organic looking design element to be included repeatedly
in your sketch

• create a version of your scene with the organic design element repeated
in random positions - you may need to implement some kind of ‘strat-
ified sampling’ (for example divide your screen into four quadrants all
which contain some number of randomly placed samples).

2



• create a sketch of a more structured generative scene (such as a city
landscape) (again using a loop control structure) with your more
structured design element (like a building) - this scene must look co-
herent (ie make sense).

• Your sketch must fulfill all tasks listed above

Figure 1: Output from Processing sketches generated using a loop control
structure. Top left is a more ’organic’ shaped paisley like design that is laid
out randomly (with 4 stratified sample grids). Top left is a more structured
generated drawing of a city – the stars, building and windows are generated
when the sketch is run all using loop control structures; Bottom is the
output from the example code to draw many faces

Demo:

In order to receive credit for this lab, you must demo your sketch to your
instructor or TA. For every lab, your score will be broken down 75% for
meeting the technical requirements and 25% for aesthetics. Submitting
your sketch: You must post an image of your sketch to your pinterest
Computational Art board. Please also pin your reference art. You must
also handin you pde file on polylearn.

3



Figure 2: Some (non-Processing) examples of generative art. The first one
(a more organic image) is from: http://www.pbs.org/arts/gallery/off-
book-episode-10-generative-art/off-book-episode-10-generative-
art/ and the second (a more structured image) is from:
http://www.subblue.com/gallery/album/34

Resources:

http://video.pbs.org/video/2170070010/

/*ZJ Wood - example CPE 123 code to draw many faces */

void drawFace(float fCx, float fCy, float fW, float rot) {

//ratio face - sept. 2015 - ZJ Wood

float faceH, faceW;

float eyeH, eyeW, noseH;

pushMatrix();

translate(fCx, fCy);

rotate(radians(rot));

translate(-fCx, -fCy);

faceW = 0.7*fW;

faceH = 1.6*faceW;

noseH = faceH/4;

eyeW = .2*faceW;

eyeH = eyeW/1.6;

strokeWeight(2);

//fill(180, 137, 138);

fill(192, 110, 71);

//ears

ellipse(fCx-faceW/2, fCy+noseH/2, eyeW*.5, noseH);

ellipse(fCx+faceW/2, fCy+noseH/2, eyeW*.5, noseH);

//head

ellipse(fCx, fCy, faceW, faceH);

//eyes

fill(255);

ellipse(fCx-eyeW, fCy, eyeW, eyeH);

ellipse(fCx+eyeW, fCy, eyeW, eyeH);

//eyebrows

fill(83, 49, 32);

4



arc(fCx-eyeW, fCy-eyeH, eyeW*1.4, eyeH, PI, TWO_PI);

arc(fCx+eyeW, fCy- eyeH, eyeW*1.4, eyeH, PI, TWO_PI);

//iris

fill(122, 76, 23);

ellipse(fCx-eyeW, fCy, eyeH, eyeH);

ellipse(fCx+eyeW, fCy, eyeH, eyeH);

//pupils

fill(23);

ellipse(fCx-eyeW, fCy, eyeH/2, eyeH/2);

ellipse(fCx+eyeW, fCy, eyeH/2, eyeH/2);

//nose

fill(174, 99, 69);

arc(fCx, fCy+noseH, eyeW, eyeH, 0, PI);

line(fCx, fCy, fCx-eyeW/2, fCy+noseH);

//lips

fill(201, 90, 75);

arc(fCx, fCy+1.5*noseH, 2*eyeW, eyeH, 0, PI);

//hat

fill(0);

ellipse(fCx, fCy-noseH, faceW*1.5, eyeH);

arc(fCx, fCy-noseH, faceW, faceH/2, PI, TWO_PI);

popMatrix();

}

void setup() {

size(600, 600);

noLoop();

}

void draw() {

background(12, 34, 56);

//draw faces mild stratefied sampling - upper left corner

for (int i=0; i < 10; i ++) {

drawFace(random(0, width/2), random(0, height/2), random(30, 50), random(0, 360));

}

//upper right corner

for (int i=0; i < 10; i ++) {

drawFace(random(width/2, width), random(0, height/2), random(30, 50), random(0, 360));

}

//lower left corner - slightly bigger

for (int i=0; i < 10; i ++) {

drawFace(random(0, width/2), random(height/2, height), random(40, 70), random(0, 360));

}

//upper right corner

for (int i=0; i < 10; i ++) {

drawFace(random(width/2, width), random(height/2, height), random(40, 70), random(0, 360));

}

}

5


