
Towers of Hanoi

Team Name:

Manager:

Recorder:

Presenter:

Analyst:

This is a Process Oriented Guided Inquiry Learning (POGIL) activity. You and your team will 
examine a working program. A series of questions will guide you through a cycle of exploration, 
concept invention, and application. There is strong evidence that this is more effective (and less 
boring) than a traditional lecture.

By the time you are done with this activity, you and your team should be able to:

• understand and write simple recursive methods.

• think more critically.

Your team’s recorder is responsible for writing your team’s answers to the numbered questions 
on this form.

After you complete this activity, please fill out the short survey at

http://goo.gl/forms/HXjyuUb2ou

to improve this activity for future users.



Playing the game

The Towers of Hanoi puzzle was invented in 1883 by Édouard Lucas. Our program is not about 
allowing humans to solve the puzzle but about generating solutions. To understand the puzzle 
itself, go to https://www.mathsisfun.com/games/towerofhanoi.html and play. First try to solve the 
puzzle with three disks, then four.

1. Is everyone done playing and ready to pay attention to the team?

You may need to go back and play the game again to answer some of the questions to come, but 
you should do so deliberately, because your team’s manager assigned one or more people to find 
something out, not merely because you got bored with the conversation or thought you could 
answer a question better on your own.

2. What limitations do the rules place on moving disks?

If the three towers are labeled A, B, and C, here is a solution for two disks:

A → B
A → C
B → C

3. What is a solution for three disks?

4. What is a solution for four disks?



Stop here and wait for the other teams. If your instructor has given you a way to 
indicate that you have reached this point, use it now. Once all teams are ready, there 
will be a short discussion involving the whole class. Your team’s presenter should be 

prepared to present any of your team’s previous answers to the class. This discussion is also a 
good time for your team (through your presenter) to ask any questions you have. If your team is 
done before other teams, discuss the following open-ended question:

5. Is there any pattern to the sequence of moves in a solution?



Hard-coded solutions

Examine Hanoi.java. This program contains several solutions, which we will examine in turn.

As written, the program prints out a solution for one disk by calling hanoi1HardCoded.

6. Modify main to call hanoi2HardCoded instead. You will need three arguments instead 
of two. Why is the third argument needed?

7. Does hanoi2HardCoded produce a correct solution for two disks?

8. Does hanoi3HardCoded produce a correct solution for three disks?

9. What is accomplished by the first three lines in hanoi3HardCoded?

10. What is accomplished by the fourth line in hanoi3HardCoded?

11. What is accomplished by the last three lines in hanoi3HardCoded?

12. What relevance does the largest disk have while the last three lines are solving this 
subproblem?



Stop here and wait for the other teams. If your instructor has given you a way to 
indicate that you have reached this point, use it now. Once all teams are ready, there 
will be a short discussion involving the whole class. Your team’s presenter should be 

prepared to present any of your team’s previous answers to the class. This discussion is also a 
good time for your team (through your presenter) to ask any questions you have. If your team is 
done before other teams, discuss the following open-ended question:

13. These methods are said to have solutions “hard coded” into them: the computer doesn’t so 
much solve the puzzle as spit out a prerecorded answer. Would this be a good approach for 
producing, say, a solution for seven disks? Why or why not?



Calling simpler methods

14. Modify main to call hanoi1CallingSimplerMethods. Does it produce a correct 
solution for one disk?

15. Does hanoi2CallingSimplerMethods produce a correct solution for two disks?

16. Does hanoi3CallingSimplerMethods produce a correct solution for three disks?

17. How does hanoi3CallingSimplerMethods differ from hanoi3HardCoded?

With main set up to call hanoi3CallingSimplerMethods, place a breakpoint in 
hanoi1CallingSimplerMethods and run the program in the debugger. (If you’ve 
forgotten how to use the debugger, review the video at http://screencast.com/t/NEgEMW6sNB2.)

18. Complete the table below summarizing the state of the call stack.

19. Does start have the same value throughout the call stack? If so, what is it? If not, why 
not?

20. Does spare have the same value throughout the call stack? If so, what is it? If not, why 
not?

Method

hanoi3CallingSimplerMethods
main

Arguments

start = A, spare = B, end = C
args = <array of length 0>



21. Does end have the same value throughout the call stack? If so, what is it? If not, why not?

Return to the Java perspective in Eclipse.

22. Wha t i s t he s ame be tween hanoi3CallingSimplerMethods and 
hanoi2CallingSimplerMethods?

23. W h a t i s d i f f e r e n t b e t w e e n hanoi3CallingSimplerMethods a n d 
hanoi2CallingSimplerMethods?

24. Can you write hanoi4CallingSimplerMethods? Does it work? How do you know?



Stop here and wait for the other teams. If your instructor has given you a way to 
indicate that you have reached this point, use it now. Once all teams are ready, there 
will be a short discussion involving the whole class. Your team’s presenter should be 

prepared to present any of your team’s previous answers to the class. This discussion is also a 
good time for your team (through your presenter) to ask any questions you have. If your team is 
done before other teams, discuss the following open-ended question:

25. Would this be a good approach for producing, say, a solution for seven disks? What about 
for 50 disks? Why or why not?



Recursion

Modify main to call hanoi:

hanoi("A", "B", "C", 3);

26. What does this version of the program print?

27. What does the fourth argument specify?

28. How can you use hanoi to produce a solution for four disks?

29. What about seven disks?

Now examine the code for the hanoi method.

30. How is hanoi similar to hanoi3CallingSimplerMethods?



31. How is it different?

32. hanoi3CallingSimplerMethods called hanoi2CallingSimplerMethods to 
solve subproblems. What does hanoi call?

This surprising action is called recursion.

33. With main set to call hanoi using three disks, place a breakpoint on line 45 and run the 
program in the debugger. Complete the table below summarizing the state of the call stack.

34. hanoi calls itself to solve easier problems. In what sense are they easier?

35. For what argument values does hanoi not recursively call itself?

Returning to the Java perspective, comment out the first three lines of hanoi, as well as one of the 
closing curly braces, leaving only this:

hanoi(start, end, spare, n - 1);
StdOut.println(start + " -> " + end);
hanoi(spare, start, end, n - 1);

Method

hanoi
main

Arguments

start = A, spare = B, end = C, n = 3
args = <array of length 0>



36. The lines you commented out make up the base case, the easiest problem. What happens 
when you run the program without the base case? Why?

37. Restoring those lines, replace n - 1 with n in the two recursive calls. What happens when 
you run the program? Why?

Stop here and wait for the other teams. If your instructor has given you a way to 
indicate that you have reached this point, use it now. Once all teams are ready, there 
will be a short discussion involving the whole class. Your team’s presenter should be 

prepared to present any of your team’s previous answers to the class. This discussion is also a 
good time for your team (through your presenter) to ask any questions you have. If your team is 
done before other teams, discuss the following open-ended question:

38. Did any members of your team previously believe it was impossible for a method to call 
itself? Why?

Please fill out the survey at http://goo.gl/forms/HXjyuUb2ou.


	Playing the game
	Hard-coded solutions
	Calling simpler methods
	Recursion

