
	

Wallpaper	Tessellation	Creator	
(by	Mark	Gondree,	based	on	original	assignment	by	Robert	Muller)	

Goals	
In	this	project,	you	will	make	a	program	that	draws	some	tessellations.	Each	geometric	
shape	that	is	tessellated	will	be	written	in	its	own	function,	which	will	be	used	repeatedly	
to	fill	the	plane	of	the	graphics	window.	

You	will	be	practicing	the	following	concepts	from	prior	labs:	

• while-loops,	nested	for-loops	
• conditionals	
• drawing	shapes	with	the	graphics	package	
• writing	functions	from	specifications	
• lists	(via	polygons	and	text	manipulation)	

	

Summary	
A	tessellation	(https://en.wikipedia.org/wiki/Tessellation)	is	a	surface	tiling	of	the	plane	
using	one	or	more	geometric	shapes.	Ceramic	tiling	feature	tessellations	reached	an	
artform	in	Persian	(http://www.iranchamber.com/art/articles/tile_history2.php),	Islamic	
(https://en.wikipedia.org/wiki/Islamic_architecture)	and	Ancient	Roman	
(https://en.wikipedia.org/wiki/Roman_mosaic)	architecture.	The	tilings	at	the	Alhambra	
palace	
(http://mathstat.slu.edu/escher/index.php/The_Alhambra_and_The_Alcazar_(Spain))	
during	Spain's	Moorish	rule	are	held	in	especially	high	reguard	for	their	beauty,	diversity	
and	complexity.	Many	have	studied	the	patterns	in	these	works.	Famous	among	these	are	
the	17th	century	German	mathematician/astronomer	Johannes	Kepler	(http://www.tess-
elation.co.uk/johannes-kepler),	and	the	20th	century	Dutch	artist	MC	Escher	
(http://mathstat.slu.edu/escher/index.php/Escher_Artwork_Gallery).	

You	will	write	a	program	that	draws	so-called	Wallpaper	tessellations	
(http://mathstat.slu.edu/escher/index.php/Wallpaper_Patterns).	These	are	tessellations	
that	tile	the	entire	plane,	both	right-to-left	and	top-to-bottom.	The	program	prompts	the	
user	for	what	they	want	to	draw,	the	size	of	the	plane	for	the	tiling,	shows	the	requested	
drawing,	lets	the	user	click	to	close	the	window,	and	then	repeats	the	process	for	the	next	
drawing.	This	program	will	be	built	in	stages:	Checkpoint	A,	Checkpoint	B,	and	then	Final	
Code.	There	is	a	demo	associated	with	each	intermediate	stage.	

The	final	program	is	demonstrated	in	the	short	video	below:	



	

	

Part	of	this	project	is	an	exercise	in	implementing	functions	to	their	specification,	and	
matching	target	outputs.	It	is	not	a	creative	exercise,	but	rather	the	opportunity	for	you	to	
demonstrate	understanding	of	specifications,	control	over	the	tools	we've	learned	in	the	
class,	and	being	detail-oriented.	You	are	asked	to	demonstrate	the	requested	behavior	and	
output,	matching	both	the	functions'	docstrings	and	the	sample	output.	In	all	samples,	user	
input	is	shown	in	italics	and	underlined.	

In	contrast,	the	extra	credit	is	a	creative	exercise,	in	which	you	can	draw	your	own	
tessellations,	or	reproduce	a	tessellation	you	choose	from	existing	drawings.	

Template	
You	will	need	the	graphics	package	and	the	template	for	the	project:	

• Download	the	graphics	package,	graphics.py	
• Download	the	template,	template_P2.py	
The	template	contains	functions	and	specifications	for	functions	you	will	implement.	The	
functions	each	have	docstrings	written	for	you	holding	the	function	specifications.	Your	
implementation	of	the	function	should	match	the	specifications	provided	in	this	template.	
	 	



	

Drawing	Regular	Polygons	
Return	to	this	section	for	Checkpoint	B,	when	we	draw	tessellations	using	hexagons	and	
octagons.	

A	hexagon	is	a	6-sided	regular	polygon.	An	octagon	is	an	8-sided	regular	polygon.	This	
section	describes:	(a)	how	to	draw	a	polygon	using	the	graphics	library,	(b)	how	to	figure	
out	the	basic	(x,y)	points	of	an	𝑛-sided	regular	polygon	and	how	to	rotate	it,	(c)	the	
properties	of	the	hexagon	and	(d)	the	properties	of	the	octagon.	

Polygon	Class	
To	draw	a	polygon	shape	p	using	the	graphics	library,	one	uses	code	like	the	following:	

				p	=	Polygon(points)	
				p.draw(window)	

Above,	the	variable	points	is	a	list	of	Point	objects.	

Polygon	Coordinates	
If	we	want	to	draw	a	polygon	with	𝑛-sides,	we	need	to	calculate	its	vertices	(the	points).	

One	method	is:	consider	a	circle	with	center	(x,y)	and	radius	𝑟.	Select	𝑛	points	that	are	
evenly	spaced	on	its	circumference.	Let	the	𝑖-th	point	be	at	coordinate	(𝑥! ,𝑦!)	where	

𝑥! = 𝑥 + 𝑟cos(2𝜋𝑖/𝑛)	

𝑦! = 𝑦 + 𝑟sin(2𝜋𝑖/𝑛)	

How	does	this	work?	Lets	consider	𝑛 = 3	(thus,	𝑖 = 0,1,2).	This	gives	us	an	equilateral	
triangle.	If	we	center	the	triangle	at	(0,0)	and	let	𝑟 = 1,	we	could	define	it	using	the	three	
points	  (𝑥!,𝑦!), (𝑥!,𝑦!), (𝑥!,𝑦!)  	as:	

  cos0, sin0 , cos
2𝜋
3 , sin

2𝜋
3 , cos

4𝜋
3 , sin

4𝜋
3   	

Visually,	this	looks	like	the	following,	where	  (𝑥!,𝑦!), (𝑥!,𝑦!), (𝑥!,𝑦!)  = 𝐴,𝐵,𝐶 :	

	
	 	



	

If	this	polygon	is	not	oriented	the	way	we	want	it,	we	can	simply	rotate	it	into	a	new	
position.	Returning	to	our	example,	we	can	rotate	our	triangle	by	𝜃 = 𝜋/6	radians,	by	using	
these	vertices	instead:	

  cos 0+ 𝜃 ,sin 0+ 𝜃 , cos
2𝜋
3 + 𝜃 ,sin

2𝜋
3 + 𝜃 , cos

4𝜋
3 + 𝜃 ,sin

4𝜋
3 + 𝜃   	

	
	 	



	

Anatomy	of	a	Hexagon	
To	draw	a	hexagon,	it	is	useful	to	understand	its	
properties.	

long	diagonal	(d)	
Lines	AD,	FC,	EB	are	all	the	same	length:	the	distance	𝑑.	

edge	length	(a)	
This	is	the	length	of	every	edge	(AB,	BC,	CD,	DE,	EF,	FA).	
This	is	the	same	as	the	circumcircle	radius	(the	radius	of	
the	circle,	if	we	drew	a	circle	on	the	outside	of	the	hexagon).	If	we	draw	this	polygon	by	
selecting	points	on	the	circumference	of	a	circle,	this	is	the	radius	of	that	circle.	

𝑑 = 2𝑎	

incircle	radius	(b)	
This	is	the	radius	of	the	circle	that	fits	inside	the	hexagon	(the	circle	on	the	inside	of	the	
hexagon).	

𝑏 = 𝑎! −
𝑎!

4 	

Anatomy	of	an	Octagon	
To	draw	an	octagon,	it	is	useful	to	understand	its	
properties.		

edge	length	(e)	
This	is	the	length	of	every	edge	(BC,	CD,	etc).	

long	diagonal	(d)	
Lines	AE,	HD,	GC,	BF	are	all	the	same	distance:	the	
distance	𝑑.	If	we	draw	this	polygon	by	selecting	points	on	
the	circumference	of	a	circle,	this	is	the	diameter	of	that	
circle.		

𝑑 = 𝑒 4+ 2 2	

medium	diagonal	(m)	
Lines	AD,	HE,	GB,	FC	are	all	the	same	distance:	the	distance	𝑚.	

𝑚 = 𝑒(1+ 2)	

	

	 	



	

Checkpoint	A	
For	Checkpoint	A,	you	will	need	to	demonstrate	a	program	that	does	the	following:	

1. Prompts	the	user	to	enter	the	dimensions	for	the	plane	on	which	the	shapes	are	drawn	
(see	Sample	1,	Sample	2).	If	invalid	window	inputs	are	provided,	the	program	should	
output	an	error	message	and	exit	with	an	error	code	(see	Sample	3,	Sample	4).	

2. The	menu.	

	 Implement	and	call	the	get_selection()	function.	The	program	shoud	repeatedly	call	
the	function,	handle	the	user's	selection,	possibly	draw	something,	and	then	loop	to	
show	the	menu	again	(see	Sample	1,	Sample	2).	

	 Each	time	the	menu	is	shown,	it	should	prompt	the	user	for	a	selection.	For	checkpoint	
A,	your	program	only	needs	to	accept	numbers	0--13,	and	the	inputs	"Q"	or	"Quit"	(any	
capitalization)	as	valid	user	input;	however,	it	will	only	act	on	a	few	of	these	inputs.	
Later,	we	will	expand	both	what	we	accept	from	the	user	and	how	we	act	on	that	input.	

3. Square	tessellations.	

Implement	selections	1,	5	and	9	by	implementing	and	calling	the	draw_square(),	
draw_square_line()	and	tile_squares()	functions.	

	 In	particular,	main()	should	call	the	appropriate	function	according	to	the	user's	
selection.	Your	main()	should	prompt	the	user	for	relevant	parameters	in	each	
scenario	(see	the	examples	in	Sample	5).	

	 Read	the	docstrings	of	each	function	to	learn	what	it	does.	For	example,	
draw_square()	draws	a	single	square	at	a	specific	place,	while	draw_square_line()	
uses	draw_square	to	draw	a	line	of	squares	across	the	entire	plane;	finally,	
tile_squares	uses	draw_square_line	repeatedly	to	tile	the	entire	plane	with	lines.	

4. Ring	tessellations.	

Implement	selections	2,	6	and	10	by	implementing	and	calling	the	draw_ring(),	
draw_ring_line(),	and	tile_rings()	functions.	See	Sample	6	to	see	several	examples	
of	the	parameters	requested	for	each	selection,	and	the	pictures	that	are	drawn.	

5. For	checkpoint	A:	the	program	does	not	yet	support	the	remaining	selections	(3,	4,	7,	
8,	11,	12,	13).	For	these,	the	program	should	not	draw	anything	or	even	create	a	
window.	Instead,	it	should	simply	loop,	showing	the	user	the	menu	and	prompt	for	the	
next	drawing.	(See	Sample	2).	

6. 	Demo.	Demo	Checkpoint	A.	

	 	



	

Advice	and	Hints	

Hint:	To	determine	if	a	string	s	is	comprised	entirely	of	digits,	you	can	use	the	string	
member	function	s.isdigit(),	which	will	return	True	if	it	has	only	digits	in	it,	and	false	
otherwise.	

Hint:	To	tile	the	entire	plane	(the	window),	you	need	to	know	the	height	and	width	of	the	
window.	Given	a	GraphWin	object	called	win:	one	can	get	its	height	using	the	method	
win.getHeight(),	and	one	can	get	its	width	using	the	method	win.getWidth().	

Hint:	To	create	a	ring	with	a	border,	make	a	circle	circ	and	then	use	the	method	
circ.setWidth(b)	to	draw	a	border	of	width	b.	

Be	careful:	in	our	graphics	library,	this	method	adds	half	the	width	to	the	outside	of	the	
circle	object	(effectively	making	the	circle	larger)	and	half	the	width	to	the	inside	of	the	
circle	object	(making	the	inside	appear	smaller).	Thus,	to	draw	a	circle	of	radius	𝑟	with	a	
border,	you	will	need	to	draw	a	slightly	smaller	circle	(so	that	its	radius	plus	its	border	will	
create	a	drawing	with	radius	𝑟).	

Hint:	To	pick	a	random	number	between	𝑎	--	𝑏,	consider	picking	a	random	number	
between	0	--	(𝑏 − 𝑎)	and	then	just	add	𝑎	to	it.	

Hint:	The	functions	to	tile	shapes	across	the	plane	each	select	a	random	location	for	the	
first	shape.	How	to	make	this	random	selection	in	written	in	the	docstring.	This	hint	
explains	the	intention	of	that	specification.	

Consider,	for	example,	the	function	tile_squares().	The	possible	choices	of	the	first	
square's	upper-left	coordinate	is	somewhere	within	the	solid,	green	area	in	the	illustration	
below:	it	is	possible	to	start	the	tiling	anywhere	between	(0,0)	and	(1-w,	1-w).	

	

In	the	case	of	(0,0),	the	entire	first	square	would	be	visible	in	the	window.	In	the	case	of	(1-
w,	1-w),	the	only	visible	part	of	the	first	square	would	be	the	lower-right	corner	(appearing	
as	a	single	pixel).	Most	of	the	time,	something	between	these	two	extremes	will	be	selected.	

	 	



	

Sample	Input/Output	

Sample	1	
--->	Tessellations	Creator	<---	
	
	Enter	window	width:	600	
	Enter	window	height:	600	
	
-----------------------------	
---------	Draw	Menu	---------	
-----------------------------	
1.	One	square	
2.	One	ring	
3.	One	hexagon	
4.	One	octagon	
5.	Row	of	squares	
6.	Row	of	rings	
7.	Row	of	hexagons	
8.	Row	of	octagons	
9.	Tile	squares	
10.	Tile	rings	
11.	Tile	hexagons	
12.	Tile	octagons	
13.	Extra	Credit	
Type	Quit	to	exit		
	
	Enter	selection:	QuiT	
	

Sample	2	
--->	Tessellations	Creator	<---	
	
	Enter	window	width:	500	
	Enter	window	height:	100	
	
-----------------------------	
---------	Draw	Menu	---------	
-----------------------------	
1.	One	square	
2.	One	ring	
3.	One	hexagon	
4.	One	octagon	
5.	Row	of	squares	
6.	Row	of	rings	
7.	Row	of	hexagons	
8.	Row	of	octagons	
9.	Tile	squares	
10.	Tile	rings	
11.	Tile	hexagons	
12.	Tile	octagons	



	

13.	Extra	Credit	
Type	Quit	to	exit		
	
	Enter	selection:	-1	
Invalid	choice,	try	again.	
	
-----------------------------	
---------	Draw	Menu	---------	
-----------------------------	
1.	One	square	
2.	One	ring	
3.	One	hexagon	
4.	One	octagon	
5.	Row	of	squares	
6.	Row	of	rings	
7.	Row	of	hexagons	
8.	Row	of	octagons	
9.	Tile	squares	
10.	Tile	rings	
11.	Tile	hexagons	
12.	Tile	octagons	
13.	Extra	Credit	
Type	Quit	to	exit		
	
	Enter	selection:	q	
	

Sample	3	
--->	Tessellations	Creator	<---	
	
	Enter	window	width:	0	
ERROR:	width	must	be	>	0	
	
Sample	4	
--->	Tessellations	Creator	<---	
	
	Enter	window	width:	600	
	Enter	window	height:	0	
ERROR:	height	must	be	>	0	

	
	 	



	

Sample	5	
The	below	has	only	partial	input/output	shown,	for	brevity.	The	examples	employ	a	
drawing	window	of	size	(200,	100).	

	Enter	selection:	1	
	Enter	x-value	of	upper-left	square:	10	
	Enter	y-value	of	upper-left	square:	10	
	Enter	side	length:	90	

	
	

	Enter	selection:	5	
	Enter	x-value	of	upper-left	square:	50	
	Enter	y-value	of	upper-left	square:	50	
	Enter	side	length:	30	

	
	

	Enter	selection:	9	
	Enter	side	length:	100	

	
		

	Enter	selection:	9	
	Enter	side	length:	50	

	

	

	

	
	
	 	



	

Sample	6	
The	below	has	only	partial	input/output	shown,	for	brevity.	The	examples	employ	a	
drawing	window	of	size	(300,	100).	

	Enter	selection:	2	
	Enter	x-value	of	center:	50	
	Enter	y-value	of	center:	50	
	Enter	radius:	50	
	Enter	ring	width:	60	
Error:	ring	width	should	not	be	
larger	than	ring	radius.	

	
Nothing	is	drawn	and	no	window	is	created.	

	

	Enter	selection:	2	
	Enter	x-value	of	center:	0	
	Enter	y-value	of	center:	0	
	Enter	radius:	100	
	Enter	ring	width:	50	

	
	

	Enter	selection:	2	
	Enter	x-value	of	center:	50	
	Enter	y-value	of	center:	50	
	Enter	radius:	50	
	Enter	ring	width:	30	

	
	

	Enter	selection:	6	
	Enter	x-value	of	center:	150	
	Enter	y-value	of	center:	50	
	Enter	radius:	30	

	
	

	Enter	selection:	10	
	Enter	radius:	25	

	
	

	



	

Checkpoint	B	
For	Checkpoint	B,	you	will	extend	your	code	from	Checkpoint	A	by	supporting	two	new	
tilings:	hexagons	and	octagons.	

1. Hexagon	tessellations.	
Implement	selections	3,	7	and	11	by	implementing	and	calling	the	draw_hexagon(),	
draw_hexagon_line(),	and	tile_hexagons()	functions.	See	Sample	7	to	see	several	
examples	of	the	parameters	requested	for	each	selection,	and	the	pictures	that	are	
drawn.	

2. Octagon	tessellations.	
Implement	selections	4,	8	and	12	by	implementing	and	calling	the	draw_octagon(),	
draw_octagon_line(),	and	tile_octagons()	functions.	See	Sample	8	to	see	several	
examples	of	the	parameters	requested	for	each	selection,	and	the	pictures	that	are	
drawn.	

3. 	Demo.	Demo	Checkpoint	B.	

Advice	and	Hints	

Hint:	The	graphics	package	requires	integers	when	creating	Points	in	the	graphics	window.	
Be	aware	you	may	need	to	think	of	well-reasoned	or	relatively	safe	ways	to	turn	a	float	
back	into	an	int,	in	order	to	draw	things.	Try	to	figure	out	the	best	way	to	do	this,	but	it	is	
ok	if	your	drawings	overlap	or	are	"off"	by	a	pixel	or	two,	due	to	rounding;	some	of	the	
samples	given	below	are	"off"	by	a	pixel,	for	example.	

	 	



	

Sample	Input/Output	

Sample	7	
The	below	has	only	partial	input/output	shown,	for	brevity.	The	examples	employ	a	
drawing	window	of	size	(300,	100).	

	Enter	selection:	3	
	Enter	x-value	of	center:	0	
	Enter	y-value	of	center:	0	
	Enter	long	diagonal:	100	

	
		

	Enter	selection:	3	
	Enter	x-value	of	center:	50	
	Enter	y-value	of	center:	50	
	Enter	long	diagonal:	100	

	
	

	Enter	selection:	7	
	Enter	x-value	of	center:	0	
	Enter	y-value	of	center:	50	
	Enter	long	diagonal:	50	

	
	

	Enter	selection:	11	
	Enter	long	diagonal:	50	

	

	
	 	



	

Sample	8	
The	below	has	only	partial	input/output	shown,	for	brevity.	The	examples	employ	a	
drawing	window	of	size	(300,	100).	

	Enter	selection:	4	
	Enter	x-value	of	center:	0	
	Enter	y-value	of	center:	0	
	Enter	long	diagonal:	100	

	
	

	Enter	selection:	4	
	Enter	x-value	of	center:	100	
	Enter	y-value	of	center:	50	
	Enter	long	diagonal:	75	

	
	

	Enter	selection:	8	
	Enter	x-value	of	center:	0	
	Enter	y-value	of	center:	50	
	Enter	long	diagonal:	50	

	
	

	Enter	selection:	12	
	Enter	long	diagonal:	50	

	
	

	

	 	



	

Final	Code	
For	your	final	code,	extend	get_selection()	to	let	the	user	input	strings,	rather	than	just	
using	numbers	to	indicate	a	selection.	Specifically,	the	following	words	should	be	
supported:	"square",	"ring",	"hexagon"	"octagon",	"row"	and	"tile".	How	to	support	these	
words	is	explained	below:	

• All	input	should	be	case-insensitive	(i.e.,	user	may	enter	any	capitlaization	they	
choose).	

• The	user	will	input	either	one	or	two	words,	and	this	should	be	mapped	into	the	
correct	numeric	selection.	For	example,	"square"	would	map	into	selection	1;	the	input	
"row	square"	or	"square	row"	would	both	map	into	selection	5;	the	input	"tile	square"	
or	"square	tile"	would	both	map	into	selection	9.	

• Any	invalid	combination	of	words	should	be	considered	a	'soft	error':	output	an	errror	
message,	but	do	not	halt	the	program.	Instead,	simply	prompt	the	user	with	the	menu	
again.	Examples	of	soft	error	conditions	include:	"square	ring",	"octagon	octagon",	
"pizza	rat",	etc.	

There	is	no	demo	for	your	final	code.	

	

References	
This	assignment	is	based	on	the	CS1	"Tessellation"	assignment	
(http://www.cs.bc.edu/~muller/teaching/cs101/f13/asst/2/)	by	Robert	Muller	(Boston	
College),	published	via	NCWIT's	EngageCSEdu	project	(https://www.engage-csedu.org/).	

	

	 	



	

Extra	Credit	
You	can	get	extra	credit	by	creating	your	own	tessellations.	Your	work	must	satisfy	the	
following	criteria:	

• The	extra	credit	should	be	mentioned	in	your	program's	docstring.	
• It	should	be	demonstrated	when	the	user	selects	13	from	the	menu.	
• The	demonstration	should	show	a	valid	wallpaper	tessellations	that	completely	fills	

the	plane.	
• Its	implementation	should	be	divided	into	separate	functions,	each	of	which	are	

documeted	accurately	(following	the	docstring	style	demonstrated	in	the	template).	

Any	extra	credit	submitted	will	also	be	enrolled	in	an	online	art	contest,	where	the	class	
votes	on	their	favorite	digital	artwork.	Voting	and	submissions	will	be	anonymous.		

You	may	create	an	entirely	unique	tessellation,	or	find	a	tiling	from	art	and	copy	that	
tessellation.	The	below	might	inspire	you:	

	 	 	
	

	 	



	

Grading	Rubric	
	
Checkpoints	[20%]	
Checkpoint	demos	are	each	worth	10	points;	each	is	all	or	nothing.	

Programming	Design	and	Style	[25%]	
In	addition	to	being	correct,	your	program	should	be	easy	to	understand	and	well	
documented.	For	details,	see	the	rubric	below.	

Correctness	[55%]	
The	most	important	part	of	your	grade	is	the	correctness	of	your	final	program.	Your	
program	will	be	tested	numerous	times,	using	different	inputs,	to	be	sure	that	it	meets	the	
specification.	You	will	not	get	full	credit	for	this	unless	your	output	matches	the	sample	
output	exactly	for	every	case,	including	capitalization	and	spacing.	Attention	to	detail	will	
pay	off	on	this	assignment.	For	details,	see	the	rubric	below.	

Detailed	Rubric	 	

Correctness:	functional	features	(50	points	--	5	points	each)	

Case	1:	 The	main	menu	appears	exactly	as	shown	in	the	sample	(see	Sample	1).	
Case	2:	 When	the	user	inputs	an	invalid	number	for	width	or	height	of	the	window,	the	

program	produces	an	exit	code	(Ex:	Samples	3	and	4).	
Case	3:	 When	the	user	inputs	a	value	indicating	the	program	should	quit,	or	an	invalid	

selection	or	a	valid	selection	the	program	behaves	as	described	(Ex:	Samples	1	
and	2).	

Case	4:	 The	functions	draw_square(),	draw_square_line()	and	tile_squares()	are	
implemented	as	described,	and	call	each	other	when	appropriate.	

Case	5:	 The	functions	draw_ring(),	draw_ring_line()	and	tile_rings()	are	
implemented	as	described,	and	call	each	other	when	appropriate.	

Case	6:	 When	a	user	selects	an	invalid	ring	border,	an	approprate	message	is	displayed.	
When	a	user	selects	a	valid	ring	border,	the	circle	radius	is	accurately	drawn	
(see	the	hint	in	Checkpoint	A).	

Case	7:	 The	functions	draw_hexagon(),	draw_hexagon_line()	and	tile_hexagons()	are	
implemented	as	described,	and	call	each	other	when	appropriate.	

Case	8:	 The	functions	draw_octagon(),	draw_octagon_line()	and	tile_octagon()	are	
implemented	as	described,	and	call	each	other	when	appropriate.	

Case	9:	 The	tiling	and	line	options	(selection	5--12)	work	correctly	for	any	window	
dimensions.	There	are	no	gaps	or	missing	elements	in	any	rows	or	columns	
when	tiling.	No	shapes	are	drawn	twice,	or	overlap	in	a	way	that	deteriorates	the	
symmetry	of	the	tiling.	

Case	10:	 When	nothing	is	being	drawn	by	the	program,	no	window	is	displayed.	A	
window	is	only	displayed	after	all	input	has	been	validated	and	right	before	a	
function	is	called	that	will	actually	draw	something.	



	

Correctness:	spacing,	spelling,	grammar,	punctuation	(5	points)	
Your	spelling,	punctuation,	etc.	get	a	separate	score:	each	minor	error	in	spacing,	
punctuation,	or	spelling	gets	a	score	of	2.5,	and	each	major	error	gets	a	score	of	5.	Here	is	
how	the	score	translates	to	points	on	the	assignment:	
-1	 0	<	Score	<=	2.5	
-2	 2.5	<	Score	<=	5	
-3	 5	<	Score	<=	7.5	
-4	 7.5	<	Score	<=	10	
-5	 Score	>	10	

Programming	Design	and	Style	(25	points)	

Docstring	(5	points)	
There	should	be	a	docstring	at	the	top	of	your	submitted	file	with	the	following	
information:	
1	pt.	 Your	name	(first	and	last)	
1	pt.	 The	course	(CS	115)	
1	pt.	 The	assignment	(e.g.,	Project	1)	
2	pts.	 A	brief	description	of	what	the	program	does	

Documentation	(6	points)	
Not	counting	the	docstring,	your	program	should	contain	at	least	three	comments	
explaining	aspects	of	your	code	that	are	potentially	tricky	for	a	person	reading	it	to	
understand.	You	should	assume	that	the	person	understands	what	Python	syntax	means	
but	may	not	understand	why	you	are	doing	what	you	are	doing.	
6	pts.	 You	have	at	least	3	useful	comments	(2	points	each)	

Variables	(5	points)	
5	pts.	 Variables	have	helpful	names	that	indicate	what	kind	of	information	they	contain.	

Algorithm	(4	points)	
2	pts.	 Your	algorithm	is	straightforward	and	easy	to	follow.	
2	pts.	 Your	algorithm	is	reasonably	efficient,	with	no	wasted	computation	or	unused	

variables.	

Program	structure	(5	points)	
All	or	nothing:	your	code	should	define	a	main	function	and	then	call	that	function,	just	like	
our	programs	do	in	the	lab.	Other	than	library	imports,	the	docstring,	and	the	final	call	to	
main(),	you	should	not	have	any	stray	code	outside	a	function	definition.	

Catchall	
For	students	using	language	features	that	were	not	covered	in	class,	up	to	5	points	may	be	
taken	off	if	the	principles	of	programming	style	are	not	adhered	to	when	using	these	
features.	If	you	have	any	questions	about	what	this	means,	then	ask.	

	


