
Word Clouds

Essential Questions

What are the advantages to using classes in the organization of a program?

How does one isolate side-effects generated from transformation operations?

How does one assign a word's starting position randomly to one of the fours edges of the

window?

What are the mathematics expressions needed to move each word from a window's edge to its

final position?

Supporting Questions

How is the pushMatrix()-popMatrix() combination similar in usage to the beginShape()-

endShape() pair encountered in unit 3?

How does the pushMatrix()-popMatrix() combination prevent side-effects?

How do you use the random() method to place a word object along a window edge?

What are the advantages to using a for-each loop over a regular for loop? Are the two

interchangeable?

How do you synchronize two or more events?

How do you write a program to dynamically alternate between objects being in motion and then

at rest?

How does the map() method achieve the same calculation for a word's movement in time as the

full mathematics calculations?

Description

This unit teaches students how to use write programs that draw text. Students learn these

new text methods, and are introduced to the for-each loop. They learn how to isolate

transformation operations needed to render each word from having side-effects on subsequently

drawn words by book-ending commands between pushMatrix() and popMatrix() calls. The

Word Cloud program intertwines these new concepts with the major programming concepts

revisited from the first 3 units: variables, conditional statements, Boolean expressions,

arrays, classes, iteration and movement.

Students spend time finding out about and experimenting with word clouds. They find

lengthy pieces of text ranging from essays to state documents, and use them as input to any

number of Internet word cloud programs referred by the Instructor. The instructor guides the

class through the construction a simple program that shows how to create fonts and use them to

output text. These methodologies are then encapsulated in a DynamicText class whose

constructor takes a list of parameters for text, font, size, position, color, rotational angle and

alignment. Students create an array of DynamicText objects, and output them using a for-each

loop. Instructor demonstrates how to create a color-compatible background using text and a for-

loop. Students use this code as a model to write a new program that will create a densely packed

word cloud design using (a) the most frequently occurring words in a student-chosen text

passage; or (b) key words in a film, play, song, poem, etc.

To add motion, the instructor gives students a starting template for a helper "edges"

program to discover how to write code that will place each word at a random starting position on

any of the four edges of the window. With instructor guidance, students discover a linear

equation model for synchronizing the starting and ending times of all words from their initial to

final positions. Lastly, students modify the program so that it cycles and spends equal time

between two states: (a) text objects moving from random positions on the edges to their final

positions, and (b) text objects remaining at the final positions to allow time for appreciation of

the final static design.

Key Assignments

1. After whole class instruction, students build a sample program that can output text of varying

colors, size, font, rotational angle, alignment, and position.

2. Students build a program that outputs a static Word Cloud design.

3. Students modify their programs to output a dynamic Word Cloud where words appear at

random positions on the window's 4 edges, then drift for about 5 seconds to their final

positions, where they come to rest for an equal period of time. Program cycles "forever"

between these two states.

Teaching Strategies

Using the helper-program Edges, students

examine two concepts: (a) randomly positioning (text)

objects at the four edges of a window; and (b)

mathematical variants for defining 4 random intervals, and

their resulting constraints on programming style

decisions.

Using whole class instruction, teacher guides students to discover what the x and y

coordinates have to be if an object is to appear at any random position on the left edge: x = 0;

y = random(0,height); Students sequester the code in a method called leftEdge(),

then write similar method bodies for rightEdge(), topEdge() and bottomEdge().

Instructor next guides students to discover 2 basic variants for defining 4 random

intervals of equal size:

Line 1: float percent = random(0,100);

Line 2: if percent < 25) { leftEdge(); }

Line 3: else if (percent < 50) { rightEdge(); }

Line 4: else if (percent < 75) { topEdge(); }

Line 5: else { bottomEdge(); }

Line 1: float percent = random(0,100);

Line 2: if (0 <= percent && percent < 25) { leftEdge(); }

Line 3: if (25 <= percent && percent < 50) { rightEdge();}

Line 4: if (50 <= percent && percent < 75) { topEdge(); }

Line 5: if (75 <= percent && percent < 100) { bottomEdge(); }

Students are asked to consider the two code fragments for structure, simplicity and

clarity. They are asked to swap lines, e.g. swap lines 3 (rightEdge) and 4 (topEdge). Students

discover that this has no effect on output for the second code fragment. However, in the first

code fragment, no circles appear on the right edge, i.e. the rightEdge() method is never called.

Students are asked to explain the phenomenon, and instructor illustrates the concept using (a) the

number line, and (b) rearranging a sequence of filters/sieves with increasingly larger holes that

are catching balls of various diameters, and so on.

To help explain saving/restoring of the drawing plane's state by pushMatrix()-

popMatrix() – used by the program to allows text objects to rotate independently – instructor

uses a camera metaphor, e.g. taking a snapshot of the drawing surface before any

translation/rotation operations, performing the transformations, then restoring the prior state

using the snapshot.

To derive expressions that allow the text objects to move (diagonally in most cases) from

initial positions to final positions, instructor guides students to calculate a slope/intercept

equation for both horizontal and vertical components of the motion. In this case, however, x and

y are the dependent variables and fraction (of motion completed) is the independent variable,

with slope equal to the difference between final and starting coordinates, and the y-intercept

equal to the starting coordinate. Instructor gives students hints by asking what the x-coordinate

would be at 0%, 100%, 50%, 25% (in that order) and so on. Students are thus guided to derive

the equation for the x-coordinate (below). Once solved, students are directed to derive the

expression for the y-coordinate using the same methodology.

final float TOTAL_FRAMES = 300;

float frames = frameCount % TOTAL_FRAMES;

if (frames == 0) {

 this.move = !this.move;

 if (this.move) {

 this.selectStartingEdge();

 }

}

float fraction = frames / TOTAL_FRAMES;

 if (!this.move) {

 fraction = 1;

}

float totalDistanceX = this.xEnd - this.xStart;

float distanceXTraveled = totalDistanceX * fraction;

float x = distanceXTraveled + this.xStart;

float totalDistanceY = this.yEnd - this.yStart;

float distanceYTraveled = totalDistanceY * fraction;

float y = distanceYTraveled + this.yStart;

To make the objects rest for an equal amount of time, we introduce the boolean move, which

toggles after each 300 frames (at 60 frames/sec, that's 5 seconds). The modulus calculation and

subsequent calculation for fraction constrain the movement from traveling beyond the ending

position. To make the word rest for an equal amount of time (another 5 seconds), when the value

of the move variable toggles false, fraction is set to 1.

After students demonstrate proficiency in the concept for calculating a word's position-

coordinates, they are introduced to the alternate coding below, which utilizes Processing's

map(n,min1,max1,min2,max2) method, which maps a number relative to a range's minimum

and maximum, to a second range. This simplifies the mathematics and offers students an

alternate way to think about the calculation for a word's position over time. The variable

fraction can now be dropped, and full movement is achieved by setting frames to

TOTAL_FRAMES (differences shown below in RED).

final float TOTAL_FRAMES = 300;

float frames = frameCount % TOTAL_FRAMES;

if (frames == 0) {

 this.move = !this.move;

 if (this.move) {

 this.selectStartingEdge();

 }

}

 if (!this.move) {

 frames = TOTAL_FRAMES;

}

float x = map(frames,0,TOTAL_FRAMES,this.xStart,this.xEnd);

float y = map(frames,0,TOTAL_FRAMES,this.yStart,this.yEnd);

