
Week 3 Lab: Sounds good!

Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5/SoundsGoodLab on
3/22/2017

[35 pts; individual or pair; filename: hw3pr1.py]

Starting files to download

Starter file for this problem:

 Download pythonSounds.zip from this link.

Be sure to unzip that folder somewhere. It has several files all of which

need to stay in that same folder:

• hw3pr1.py (the file to edit and run!)
• swfaith.wav
• swnotry.wav
• spam.wav
• csaudio.py

• play (A small MacOS application for playing sounds...)

You need to work from within this folder!

• To do this, be sure to cd into the pythonSounds folder.

• For example, you could first move the whole pythonSounds folder to

your desktop...
• Then cd Desktop and cd pythonSounds

• From there, you can run the usual ipython and then run hw3pr1.py

• Please do keep the files inside pythonSounds all together!

If you move the hw3pr1.py file without the others..., things won't work!

https://www.cs.hmc.edu/twiki/bin/view/CS5/SoundsGoodLab
https://www.cs.hmc.edu/~cs5grad/cs5/pythonSounds.zip

Warm-up: helper functions using list

comprehensions (LCs)

Take a moment to remind yourself how list comprehensions work... .

Look over the three_ize function near the top of the hw3pr1.py file:

def three_ize(L):

 """ three_ize is the motto of the green CS 5 alien

 it's also a function that takes in a list and

 returns a list of elements each three times as large

 """

 # this is an example of a list comprehension

 LC = [3 * x for x in L]

 return LC

This function "maps" the expression 3*x over the values x in the list L.

Try it out with

Example(s):

In [1]: three_ize([13, 14, 15])

Out[1]: [39, 42, 45]

List comprehensions are a versatile syntax for mapping a function (or
expression) across all elements of a list.

If you feel good about list comprehensions, onward! (If you think more
explanation/practice would be worthwhile, try our ListComprehension page.)

Function to write #1: scale

With the above function as your model, write a function scale with the

following signature:

def scale(L, scale_factor):

where scale returns a list similar to L, except that each element has been

multiplied by scale_factor.

https://www.cs.hmc.edu/twiki/bin/view/CS5/ListComprehension

Example(s):

In [1]: scale([70, 80, 420], 0.1)

Out[1]: [7.0, 8.0, 42.0]

Use a list comprehension here.

Going further: index-based list comprehensions

Next, make sure this three_ize_by_index function is in your hw3pr1.py file.

Look it over:

def three_ize_by_index(L):

 """ three_ize_by_i has the same I/O behavior as three_ize

 but it uses the INDEX of each element, instead of

 using the elements themselves -- this is much more

flexible!

 """

 # another example of a list comprehension

 N = len(L)

 LC = [3 * L[i] for i in range(N)]

 return LC

This function does exactly the same thing as three_ize—it simply uses the

index of each element to do so. That is, now the location of each element,

named i, is changing

This index-based use of list comprehensions is even more flexible than the
element-based style, as the next couple of questions will show.

Functions to write #2 and #3: add_2 and add_3

With the above index-based functions as a guide, write a

function add_2 with the following signature:

def add_2(L, M):

such that add_2 takes in two lists and returns a single list that is an

element-by-element sum of the two arguments. If the arguments are

different lengths, your add_2 should return a list that is as long as

the shorter of the two. Just ignore or drop the extra elements from the
longer list.

Using min and len(L) and len(M) together is one way to do this. For example,

the line

N = min(len(L), len(M))

will assign N to the smaller of the lengths of L and M.

You will want to use the index-based approach for this add_2 function. You

might use three_ize_by_index as a starting point…. Also, consider how

this LC might help:

LC = [L[i]+M[i] for ...]

Here are two examples of add_2 in action:

In [1]: add_2([10, 11, 12], [20, 25, 30])

Out[1]: [30, 36, 42]

In [2]: add_2([10, 11], [20, 25, 30])

Out[2]: [30, 36]

Then, write the analogous three-input function add_3 with the following

signature:

def add_3(L, M, P):

where L, M, and P are all lists and add_3 outputs the sum of all of them, but

only as many elements as the shortest among them has.

The strategy will be very similar to add_2.

Function to write #4: add_scale_2

Next, write a function add_scale_2 with the following signature:

def add_scale_2(L, M, L_scale, M_scale):

such that add_scale_2 takes in two lists L and M and two floating-point

numbers L_scale and M_scale. These stand for scale for L and scale for M,

respectively.

Then, add_scale_2 should return a single list that is an element-by-element

sum of the two inputs, each scaled by its respective floating-point value. If
the inputs are different lengths, your add_scale_2 should return a list that is

as long as the shorter of the two. Again, just drop any extra elements.

Example(s):

In [1]: add_scale_2([10, 20, 30], [7, 8, 9], 0.1, 10)

Out[1]: [71.0, 82.0, 93.0]

In [2]: add_scale_2([10, 20, 30], [7, 8], 0.1, 10)

Out[2]: [71.0, 82.0]

This will not be too different from the previous examples!

A helper function: randomize

Next, take a look at this function in your hw3pr1.py file:

def randomize(x, chance_of_replacing):

 """ randomize takes in an original value, x

 and a fraction named chance_of_replacing

 With the "chance_of_replacing" chance, it

 should return a random float from -32767 to 32767

 Otherwise, it should return x (not replacing it)

 """

 r = random.uniform(0,1)

 if r < chance_of_replacing:

 return random.uniform(-32768,32767)

 else:

 return x

Read over the docstring and try it out.

Nothing to do here except build an understanding of what this function is
doing: how often it returns the original input and how often it returns a

random value. That random value happens to always be within the
amplitude of a sound's pressure samples.

Though it's random, here is a set of five real runs:

In [1]: randomize(42, .5)

Out[1]: 42

In [2]: randomize(42, .5)

Out[2]: 42

In [3]: randomize(42, .5)

Out[3]: 29209.30669767395

In [4]: randomize(42, .5)

Out[4]: 42

In [5]: randomize(42, .5)

Out[5]: 17751.221299744262

Function to write #5: replace_some

Next, write a function replace_some with the following signature:

def replace_some(L, chance_of_replacing):

such that replace_some takes in a list L and a floating-point

value chance_of_replacing.

Then, replace_some should independently replace—or not replace—each

element in L, using the helper function randomize.

Since this function is random, the runs below won't be replicated on your

system, but try yours out to make sure it's working in a similar fashion.

Hint: use randomize in a list comprehension: that's it! Consider how to

complete this thought (and don't forget to return LC):

 LC = [randomize(____, _________) for x in L]

Example(s):

In [1]: replace_some(range(40,50), .5) # replace about half

(hopefully the 42 remains!)

Out[1]: [40, 41, 42, -17461.09350529409, 44, -

13989.513742241645, 46, -26247.774200304026, 48, 49]

In [2]: replace_some(range(20,30), .1) # replace about a

tenth (but it's random: here 2 of them get replaced)

Out[2]: [20, 21, 16774.26240973895, 23, 24, 25, -

18184.919872079583, 27, 28, 29]

In addition to providing practice with data and functions, the above
examples will be helpful in creating functions that handle audio data in

various ways... .

The replace_some function will allow you to add "static" (random values)

to some of any sound, e.g., to make it sound "crackly."

Sound coding...

First things first: try out this function, which should already be in

your hw3pr1.py file.

You can run it with test():

a function to make sure everything is working

def test():

 """ a test function that plays swfaith.wav

 You'll need swfailt.wav in this folder.

 """

 play('swfaith.wav')

For this to work, your Python will need to support sound (every version
we've tested does). If yours does not—no problem, simply work with a
partner from here on during this lab.

Also, you'll need the swfaith.wav file in the folder in which hw3pr1.py is

located. As long as you're in the original folder, all of this should be the case.
If not, go grab all of those files that came with hw3pr1.py and copy them over

to whichever folder you're working in.

Before we go on, you'll need a bit of background information on audio data.
Then you'll have a chance to write a number of audio-processing functions.

Background on representing audio information

What is inside an audio file?

Depending on the format, the actual audio data might be encoded in many
different ways. One of the most basic is known as pulse code modulation

(PCM), in which the sound waves are sampled every so often and given
values in the range -128 to 127 (if 1 byte per sound sample is used) or -
32768 to 32767 (if there are 2 bytes for each sample). Wikipedia explains it

here.

The .wav file format encodes audio in basically this way, and the cross-
platform program Audacity is an excellent tool for visualizing the individual

PCM samples of an audio file. You don't need Audacity for this problem, but
it runs on Windows and Macs and is fun to play around with if you'd like to.
Audacity can also convert to .wav from .mp3 and many other formats. Last

but not least, Audacity was created by Dominic Mazzoni, an HMC alum!

Getting started with sound

http://en.wikipedia.org/wiki/Pulse-code_modulation
http://en.wikipedia.org/wiki/Pulse-code_modulation
http://audacity.sourceforge.net/download/

We present two examples to start acquiring and manipulating sound data.
Try these:

Sound example #1: changeSpeed

This function should already be in your file, but if not, it's here for easy
copy-and-paste:

The example changeSpeed function

def changeSpeed(filename, newsr):

 """ changeSpeed allows the user to change an audio file's

speed

 input: filename, the name of the original file

 newsr, the new sampling rate in samples per

second

 output: no return value, but

 this creates the sound file 'out.wav'

 and plays it

 """

 print("Playing the original sound...")

 play(filename)

 sound_data = [0,0] # an "empty" list

 read_wav(filename,sound_data) # get data INTO sound_data

 samps = sound_data[0] # the raw pressure samples

 print("The first 10 sound-pressure samples are\n",

samps[:10])

 sr = sound_data[1] # the sampling rate, sr

 print("The number of samples per second is", sr)

 # we don't really need this line, but for consistency...

 newsamps = samps # same samples as

before

 new_sound_data = [newsamps, newsr] # new sound data pair

 write_wav(new_sound_data, "out.wav") # write data to

out.wav

 print("\nPlaying new sound...")

 play('out.wav') # play the new file, 'out.wav'

Read over this example and try it out on the three sound files provided:

In [1]: changeSpeed("swfaith.wav", 44100) # fast Vader

... some printing ...

In [2]: changeSpeed("spam.wav", 11025) # slow Monty Python

... some printing ...

In [3]: changeSpeed("swnotry.wav", 22050) # regular-speed Yoda

... some printing ...

Those lines should already be there. If you're using ipython notebook, please

place them in a cell and then run that cell.

Before continuing, it's good to review some points about the code and how

it works:

1. The sound data is returned by the call to read_wav in two parts using

the call

 samps, sr = read_wav(filename)

Python is nice in that you can return any number of values from a
function. Here, readwav is returning two values.

2. After that call, the variable samps should have a large list of raw

pressure samples (floats). Don't print this list—it can be too big and
can slow down or choke the ipython shell!

3. Also, after that call, the variable sr is an integer that represents

the sampling rate, i.e., the number of samples that should be played
per second for normal-speed playback.

4. Some printing happens, so that you can see a little bit of the data.

Again, it's a bad idea to print all of the sound samples—some versions
of Python can choke or freeze when printing so much data!

5. We already have the new sampling rate—that was the newsr argument.

For consistency, we use the variable newsamps to label the old sound

data samples. In this case they're not changing at all, but in later
programs they will.

6. The code then writes newsamps and newsr out to a file, named out.wav,

which will appear in the folder you're working in (replacing the old one
if there was already anout.wav).

7. To finish, the function plays that new file, which may be a different

speed than the original depending on the value of newsr.

The next example will illustrate how to create a new sound by changing the
samples themselves.

Sound example #2: flipflop

This function should already be in your file, but if not, it's also here for easy

reference and copy-and-paste:

def flipflop(filename):

 """ flipflop swaps the halves of an audio file

 input: filename, the name of the original file

 output: no return value, but

 this creates the sound file 'out.wav'

 and plays it

 """

 print("Playing the original sound...")

 play(filename)

 print("Reading in the sound data...")

 sound_data = [0,0]

 read_wav(filename,sound_data)

 samps = sound_data[0]

 sr = sound_data[1]

 print("Computing new sound...")

 # this gets the midpoint and calls it x

 x = len(samps)//2

 newsamps = samps[x:] + samps[:x]

 newsr = sr

 new_sound_data = [newsamps, newsr]

 print("Writing out the new sound data...")

 write_wav(new_sound_data, "out.wav") # write data to

out.wav

 print("Playing new sound...")

 play('out.wav')

Take a look at the middle part of this code, where the new sound samples
are created from the old ones. In this case, the newsamps are a "flipflopped"

version of the old samps.

As a result, the sound's second half is placed before its first half.

In building your audio-processing functions, use flipflop as a starting point.

Sound function to write #1: reverse

Next, write a sound-handling function reverse with the following signature:

def reverse(filename):

such that reverse takes in a filename as did flipflop.

Copy-and-paste flipflop to get started!

Like flipflop, the sampling rate should not change, but the function should

create a reversed set of sound samples and then handle them in the same
way as the two examples above. That is, you'll want to write them to the

file out.wav and then play that file.

Remember to reverse the list samps, you can write samps[::-1] in Python!

Example(s):

In [1]: reverse('swfaith.wav') # redaV htraD sounds eerier but

less intimidating

... lots of printing ...

Note that this reverse function won't need to use one any the helper

functions you wrote above, but the next few will!

Sound function to write #2: volume

Now, write a sound-handling function volume with the following signature:

def volume(filename, scale_factor):

such that volume takes in a filename as usual and a floating-point

value scale_factor. Then, volume should handle the sound in the usual

way, with the output file and played sound being scaled in amplitude

(volume) by the scaling factor scale_factor. That is, each sample should

be multiplied by scale_factor.

Here, you could use the helper function scale you wrote at the beginning of

the lab... .

Example(s):

In [1]: volume('swfaith.wav', .1) # A calmer Darth...

... lots of printing ...

In [2]: volume('swfaith.wav', 10.0) # A caffeinated Darth!

... lots of printing ...

You'll notice that your hearing adjusts remarkably well to this function's
changes in absolute volume, making the perceived effect considerably less
than you might expect.

You will also find that if you increase the volume too much, the sound
becomes distorted, just as when an amplifier is turned up to 11.

Sound function to write #3: static

Now, write a sound-handling function static with the following signature:

def static(filename, probability_of_static):

such that static takes in a filename as usual and a floating-point

value probability_of_static, which you can assume will be between 0

and 1.

Then, static should handle the sound in the usual way, with the output

samples being replaced with the probability of probability_of_static. When

they're replaced, the samples should simply be random values, uniformly
chosen in the valid range from -32768 to 32767.

Here, you should use the helper function replace_some that you wrote earlier

in the lab. You won't need randomize, because replace_some already uses it!

Example(s):

In [1]: static('swfaith.wav', .05) # Vader, driving into a

tunnel

... lots of printing ...

In [2]: static('swfaith.wav', .25) # Vader on dial-up from a

galaxy far, far away

... lots of printing ...

You might see how high you can increase the percentage of static until the

original is no longer discernable. People adapt less well to this than to
volume changes.

Sound function to write #4: overlay

Now, write a sound-handling function overlay with the following signature:

def overlay(filename1, filename2):

such that overlay takes in two filenames as usual, and it creates a new

sound that overlays the two. The result should be as long as the shorter of

the two. (Drop any extra samples, just as in add_scale_2.)

Use your add_scale_2 helper function to assist with this! That way, you can

adjust the relative loudness of the two input files. You are welcome, but
certainly not required, to add more input arguments to your overlay function

so that you can change the relative volumes on the fly (or crop the sounds

on the fly, which is a bit more ambitious).

Remember that add_scale_2(samps1, samps2, 0.5, 0.5) must take lists

(samps) as input—not filenames, which are simply strings! The samps are lists

of the raw sound data.

Example(s):

In [1]: overlay('swfaith.wav', 'swnotry.wav') # Vader vs.

Yoda

... lots of printing ...

The next function overlays a file with a shifted version of itself.

Sound function to write #5: echo

This one is more of a challenge... .

Try writing a sound-handling function echo with the following signature:

def echo(filename, time_delay):

such that echo takes in a filename as usual and a floating-point

value time_delay, which represents a number of seconds.

Then, echo should handle the sound in the usual way, with the original sound

being overlaid by a copy of itself shifted forward in time by time_delay.

To do the overlaying, you'll want to use add_scale_2, as before.

To handle the time-shifting, notice that you can use the sampling rate to
convert between the number of samples and time in seconds:

• For example, if time_delay is 0.1 and the sampling rate is 22050, then

the number of samples to wait is 2205

• Similarly, if time_delay is 0.25 and the sampling rate is 44100, then the

number of samples to wait is 11025

Hint on how to "add wait time" to samples...: the easiest way to add
"blank space" or "blank sound" in front of samps is to concatenate (add a list

of) zeros to the front of the list samps. For example,

 samps2 = [0]*42 + samps

would "wait" 42 samples, by including 42 blank-sound samples, at the start

of the sound data samps.

You'll probably want a value other than 42 - in fact, the challenge is to
compute the correct value there!

How could you figure out what integer you need instead of 42 ... ?

• remember that you know the time you'd like (in seconds) and the

sampling rate (in samples per second) ...
• Be sure that you use an integer - remember that, if you have a

floating-point value f, then int(f) is an integer.

• By the way, there are other approaches that work for echo, as well! with

thanks to Sophie Harris for inventing one of the alternatives!

Example(s):

In [1]: echo('swfaith.wav', .1) # How many zeros would be

needed in front?

... lots of printing ...

Sound Example #3: generating pure tones

The final examples of provided functions generate a pure sine-wave tone.

Here is the code, though it should also be in the file:

Helper function for generating pure tones

def gen_pure_tone(freq, seconds, sound_data):

 """ pure_tone returns the y-values of a cosine wave

 whose frequency is cyclespersec hertz

 it returns nsamples values, taken once every 1/44100 of

a second

 thus, the sampling rate is 44100 hertz

 0.5 second (22050 samples) is probably enough

 """

 if sound_data != [0,0]:

 print("Please input a value of [0,0] for sound_data.")

 return

 sampling_rate = 22050

 # how many data samples to create

 nsamples = int(seconds*sampling_rate) # rounds down

 # our frequency-scaling coefficient, f

 f = 2*math.pi/sampling_rate # converts from samples to Hz

 # our amplitude-scaling coefficient, a

 a = 32767.0

 sound_data[0] = [a*math.sin(f*n*freq) for n in

range(nsamples)]

 sound_data[1] = sampling_rate

 return sound_data

def pure_tone(freq, time_in_seconds):

 """ swaps the 2nd half with the 1st half """

 print("Generating tone...")

 sound_data = [0,0]

 gen_pure_tone(freq, time_in_seconds, sound_data)

 print("Writing out the sound data...")

 write_wav(sound_data, "out.wav") # write data to out.wav

 print("Playing new sound...")

 play('out.wav')

Look over this code and try it out to get a feel for what it does, though the

math of the sine wave is not crucial.

Rather, the important details are that the function pure_tone takes a desired

frequency freq and the span time_in_seconds. The mathematical details are

then delegated to gen_pure_tone.

Example(s):

In [1]: pure_tone(440, 0.5) # 0.5 seconds of the concert-tuning

A

... lots of printing ...

You can look up frequencies for other notes at at this Wikipedia page, among

many others. Here's a small chart, as well:

Sound function to write #6: chord

The final lab problem is to build on the above example to write a chord-
creation function named chord with the following signature:

def chord(f1, f2, f3, time_in_seconds):

such that chord takes in three floating-point frequencies f1, f2, and f3,

along with a floating-point time_in_seconds. Then, chord should create and

play a three-note chord from those frequencies.

You will want to get three sets of samps and sr from gen_pure_tone, e.g.,

http://en.wikipedia.org/wiki/Piano_key_frequencies

samps1, sr1 = gen_pure_tone(f1, time_in_seconds, [0,0])

samps2, sr2 = gen_pure_tone(f2, time_in_seconds, [0,0])

samps3, sr3 = gen_pure_tone(f3, time_in_seconds, [0,0])

Here, you really need an add_scale_3 function, though we don't have that yet.

But you can create it! (You could use add_scale2 and add_3 as starting points,

but we'd recommend writing add_scale_3 on its own—not calling those other

functions.)

Example(s):

In [1]: chord(440.000, 523.251, 659.255, 1.0) # A minor chord

... lots of printing ...

If your chord sounds static-y, you may have used add_scale_3 with too

large a set of coefficients for the combined sounds!

• You'll want to keep the overall amplitude at 1.0

• Since the original amplitude is 1.0, you'll need to use fractional scale

values to make sure the overall amplitude of the summed waves stays
at 1.0 or less

• If the wave exceeds 1.0 in amplitude, it will be "clipped" by the

speakers, which then sounds like loud static overlaying the sound... .

Challenge: Use the table of frequencies above to change that chord from an
A-minor to an A-major chord... . Or build your own...

Congratulations! For this lab, you're ready to submit your hw3pr1.py code.

However, you don't need to submit any of the other files than hw3pr1.py. Be

sure to rename the file hw3pr1.py before submitting it!

Here is a link to the submissions site.

But what about creating a C minor 7th (augmented) chord?

http://www.cs.hmc.edu/submit

Indeed, you might want to create larger chords with arbitrarily many notes
... or other unusual/odd/interesting/inspired/disturbing algorithmically-

generated sound effects. We certainly encourage you to try things out!

Alternatively, you might look at the next problems on the appropriate
assignment page:

• Homework3Gold
• Homework3Black

Or, you can simply bring down the curtain on this lab and head out towards

an entirely different encore!

Either way, be sure to submit your hw3pr1 file by next Monday evening... !

Full starter file for reference

CS5 Gold, Lab 3

Filename: hw3pr1.py

Name:

Problem description: Lab 3 problem, "Sounds Good!"

import time

import random

import math

import csaudio

from csaudio import *

import wave

wave.big_endian = 0 # needed in 2015

if you are having trouble, comment out the above line...

a function to get started with a reminder

about list comprehensions...

def three_ize(L):

 """ three_ize is the motto of the green CS 5 alien.

 It's also a function that takes in a list and

 returns a list of elements each three times as large.

 """

 # this is an example of a list comprehension

 LC = [3 * x for x in L]

 return LC

Function to write #1: scale

here is an example of a different method

for writing the three_ize function:

def three_ize_by_index(L):

 """ three_ize_by_index has the same I/O behavior as three_ize

https://www.cs.hmc.edu/twiki/bin/view/CS5/Homework3Gold
https://www.cs.hmc.edu/twiki/bin/view/CS5/Homework3Black

 but it uses the INDEX of each element, instead of

 using the elements themselves -- this is much more flexible!

 """

 # we get the length of L first, in order to use it in range:

 N = len(L)

 LC = [3 * L[i] for i in range(N)]

 return LC

Function to write #2: add_2

Function to write #3: add_3

Function to write #4: add_scale_2

Helper function: randomize

def randomize(x, chance_of_replacing):

 """ randomize takes in an original value, x

 and a fraction named chance_of_replacing.

 With the "chance_of_replacing" chance, it

 should return a random float from -32767 to 32767.

 Otherwise, it should return x (not replacing it).

 """

 r = random.uniform(0,1)

 if r < chance_of_replacing:

 return random.uniform(-32768,32767)

 else:

 return x

Function to write #5: replace_some

below are functions that relate to sound-processing ...

a function to make sure everything is working

def test():

 """ a test function that plays swfaith.wav

 You'll need swfailt.wav in this folder.

 """

 play('swfaith.wav')

The example changeSpeed function

def changeSpeed(filename, newsr):

 """ changeSpeed allows the user to change an audio file's speed

 input: filename, the name of the original file

 newsr, the new sampling rate in samples per second

 output: no return value, but

 this creates the sound file 'out.wav'

 and plays it

 """

 print("Playing the original sound...")

 play(filename)

 sound_data = [0,0] # an "empty" list

 read_wav(filename,sound_data) # get data INTO sound_data

 samps = sound_data[0] # the raw pressure samples

 print("The first 10 sound-pressure samples are\n", samps[:10])

 sr = sound_data[1] # the sampling rate, sr

 print("The number of samples per second is", sr)

 # we don't really need this line, but for consistency...

 newsamps = samps # same samples as before

 new_sound_data = [newsamps, newsr] # new sound data pair

 write_wav(new_sound_data, "out.wav") # write data to out.wav

 print("\nPlaying new sound...")

 play('out.wav') # play the new file, 'out.wav'

def flipflop(filename):

 """ flipflop swaps the halves of an audio file

 input: filename, the name of the original file

 output: no return value, but

 this creates the sound file 'out.wav'

 and plays it

 """

 print("Playing the original sound...")

 play(filename)

 print("Reading in the sound data...")

 sound_data = [0,0]

 read_wav(filename,sound_data)

 samps = sound_data[0]

 sr = sound_data[1]

 print("Computing new sound...")

 # this gets the midpoint and calls it x

 x = len(samps)//2

 newsamps = samps[x:] + samps[:x]

 newsr = sr

 new_sound_data = [newsamps, newsr]

 print("Writing out the new sound data...")

 write_wav(new_sound_data, "out.wav") # write data to out.wav

 print("Playing new sound...")

 play('out.wav')

Sound function to write #1: reverse

Sound function to write #2: volume

Sound function to write #3: static

Sound function to write #4: overlay

Sound function to write #5: echo

Helper function for generating pure tones

def gen_pure_tone(freq, seconds, sound_data):

 """ pure_tone returns the y-values of a cosine wave

 whose frequency is cyclespersec hertz

 it returns nsamples values, taken once every 1/44100 of a second

 thus, the sampling rate is 44100 hertz

 0.5 second (22050 samples) is probably enough

 """

 if sound_data != [0,0]:

 print("Please input a value of [0,0] for sound_data.")

 return

 sampling_rate = 22050

 # how many data samples to create

 nsamples = int(seconds*sampling_rate) # rounds down

 # our frequency-scaling coefficient, f

 f = 2*math.pi/sampling_rate # converts from samples to Hz

 # our amplitude-scaling coefficient, a

 a = 32767.0

 sound_data[0] = [a*math.sin(f*n*freq) for n in range(nsamples)]

 sound_data[1] = sampling_rate

 return sound_data

def pure_tone(freq, time_in_seconds):

 """ swaps the 2nd half with the 1st half """

 print("Generating tone...")

 sound_data = [0,0]

 gen_pure_tone(freq, time_in_seconds, sound_data)

 print("Writing out the sound data...")

 write_wav(sound_data, "out.wav") # write data to out.wav

 print("Playing new sound...")

 play('out.wav')

Sound function to write #6: chord

	Week 3 Lab: Sounds good!
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/SoundsGoodLab on 3/22/2017
	Starting files to download
	You need to work from within this folder!

	Warm-up: helper functions using list comprehensions (LCs)
	Function to write #1: scale
	Going further: index-based list comprehensions
	Functions to write #2 and #3: add_2 and add_3
	Function to write #4: add_scale_2
	A helper function: randomize
	Function to write #5: replace_some

	Sound coding...
	Background on representing audio information
	Getting started with sound
	Sound example #1: changeSpeed
	Sound example #2: flipflop
	Sound function to write #1: reverse
	Sound function to write #2: volume
	Sound function to write #3: static
	Sound function to write #4: overlay
	Sound function to write #5: echo
	Sound Example #3: generating pure tones
	Sound function to write #6: chord

	Full starter file for reference

