
“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

CS16, Spring 2010

proj0: ("project 0")

Simple graphics

Introduction

In this project, you'll learn how to write C code that can make drawings like
these (made by the instructor):

And drawings like these (the following are actual student drawings from CS16
Fall 2009):

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

For more actual student drawings, visit: the drawings link on the course web
page

What all of these drawings have in common is that they include some kind of
parameterization—that is, the same drawing (e.g. the awesome face), can be
drawing at:

 different locations on the screen
 with different sizes (in this case, the size is probably the radius of the

face
 with different face and mouth colors.

This is essentially an exercise in designing functions. You need to:

 decide what you want to draw
 decide what will be parameterized:

http://www.cs.ucsb.edu/~pconrad/cs16/drawings
http://www.cs.ucsb.edu/~pconrad/cs16
http://www.cs.ucsb.edu/~pconrad/cs16

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

o at a minimum, this should be location in the drawing, and some
aspect of size

o you might include other parameters at your discretion.
 create a drawing function with those parameters
 invoke it several times in a main program to create your drawing

You'll be given some basic tools to draw in either black and white, or color:

 lines
 boxes (outline or filled)
 polygons (outline or filled)
 circles (outline or filled)

We can also discuss, as student interests dictate, how to extend those routine
to do other interesting things like

 drawing stars with any number of points, in various styles
 drawing arcs and curves of various kinds

There's a program called ourDrawing.c—that's where you'll put your code for
this project. All the other files—you pretty much shouldn't have to make any
changes to those.

In ourDrawing.c, you'll use the functions provided in the other files to make
your drawing.

What you draw is up to you—as we'll explain in lecture.

The code that does the basic underlying drawing of lines, boxes, etc. is
provided for you, as well as code that copies your file to the web. However,
what is good is that the vast majority of that code is code that you already
have the capacity to understand at this point in your journey with the C
programming language. There isn't time in a 10 week course to guide you the
process of developing all that code, but we can go through some of it in
lecture to explain how it works—and as time permits, we will.

Goals for this project

By the time you have completed this project, you should:

 Have some comfort with working with larger software projects
 Have an appreciation of how computing can be fun and expressive

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

Prior Skills/Knowledge Needed

Before starting this project, you should have completed the labs up through
lab06. In particular, you should be comfortable working with arrays, structs,
arrays of structs, and passing structs and arrays of structs to functions.

This is a pair programming project

Work with the same partner you had in lab07/lab08—or if he/she is not
available for some reason, see your TA and/or instructor about getting a new
pair partner assigned.

If you do work with a new partner, please complete a new version of W01,
and post your new assignment to the forum on Gauchospace.

Step by Step Instructions

Step 0: Get together with your pair partner, and decide whose account
you'll work in

If he/she is not available, and you are assigned a new partner, then complete
a new version of worksheet W01 (html, pdf), including posting to the "Updated
pair partners for proj0 forum" on Gauchospace.

Remember: don't share passwords. Instead, use scp or email to share files
with each other at the end of each work session. (See previous labs for
details.)

It is only necessary for one member of the pair to submit—but you are BOTH
responsible for seeing that this HAS been done and that both of your names
are in the ourDrawing.c file.

Step 1: Log on to CSIL, create ~/cs16/proj0 and copy the files for this
project

Log on to CSIL, create ~/cs16/proj0

The files for this project can be found here:

https://pconrad.github.io/old_pconrad_cs16/10S/worksheets/W01/index.html
https://pconrad.github.io/old_pconrad_cs16/10S/worksheets/W01/W01.pdf

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

 http://www.cs.ucsb.edu/~pconrad/cs16/10S/projects/proj0/code

And here:

 ~pconrad/public_html/cs16/10S/projects/proj0/code/*

You can use the same techniques described in earlier labs to copy those into
your ~/cs16/proj0 directory.

Step 2: Listen to the presentation in lecture.

The following material will be covered in lecture either before, or just as this
project is being assigned.

What you are given is a collection of code containing three libraries:

 shapeFunctions.c: a library of C functions for manipulating shapes,
called shapeFunctions.c

o many of these come from lab06
 tdd.c: a library of functions for test-driven development

o these are all functions we've seen in previous labs
 drawingFunctions.c: a library of functions for drawing simple graphics

o these mostly rely on concepts we've seen before
o there are a couple of new items, which we'll briefly review

 use of enum
 use of the switch statement
 writing files to disk (which is very similar to reading files)

You'll also see header files that support these C files:

 shapes.h contains struct definitions for struct Point, struct Circle, struct
Polygon, etc.

 drawing.h contains struct definitions for making drawings
 tdd.h contains function prototypes for the tdd.c functions
 shapeFunctions.h contains function prototypes for the functions in

shapeFunctions.c
 drawingFunctions.h contains function prototypes for the functions in

drawingFunctions.c

You'll also see some programs that contain main programs that use these
libraries:

https://pconrad.github.io/old_pconrad_cs16/10S/projects/proj0/code
https://pconrad.github.io/old_pconrad_cs16/10S/projects/proj0/code
https://pconrad.github.io/old_pconrad_cs16/10S/labs/lab06

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

file what it does sample image

testMain.c

contains only
test cases,

mostly for the
functions in

shapeFunctio
ns.c

n/a

drawHouse.c

draws a black
and white

house, using
simple lines

drawFilledColorHo
use.c

draws a filled
house in color

drawSnowman.c

draws a
single

snowman in
black and

white

drawManySnowm
en.c

shows how to
make drawing
a snowman

be a function,
so you can

draw several
snowmen of

different sizes

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

drawFlags.c

shows how to
draw a simple
tri-color flag
(in this case

the
GermanFlag)

using
filledBoxes.

Another
example of

abstracting a
drawing into a

function

ourDrawing.c

draws
whatever you
want (at the
moment, it's

blank!)

We'll also go over what happens when you type "make". This week there is a
Makefile that controls what happens.

You'll need to understand just two things:

 typing "make"
 typing "make clean"

How to use the code:

To start off, type "make" (all by itself) at the Unix command prompt.
When you do you'll see output indicating that

 several C files are being compiled into programs
 some of these files are being run to produce images with .pbm

extensions
 some commands are being run to convert those .pbm files into .gif files
 those .gif files are being copied to a web page
 some test code is being run.

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

Here's an example:

-bash-3.2$ make

gcc -c testMain.c

gcc -c drawingFunctions.c

gcc -c shapeFunctions.c

gcc -c tdd.c

gcc -lm -Wall -g drawingFunctions.o shapeFunctions.o tdd.o testMain.o -o

testMain

gcc -c drawHouse.c

...

(many lines of output deleted... full transcript available in make.output.txt)

All tests passed!

-bash-3.2$.

The key line of output to look for is this one—except it will have your
username, not jsmith—unless your username happens to be jsmith:

Visit http://www.cs.ucsb.edu/~jsmith/cs16/proj0 to see your pics

Go to that website, and you'll see something like this:

The drawings in that directory are the ones created by the code in the files
below:

GIF file C file

filledHouse.gif drawFilledColorHouse.c

flags.gif drawFlags.c

https://pconrad.github.io/old_pconrad_cs16/10S/projects/proj0/make.output.txt

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

house.gif drawHouse.c

manySnowmen.gif drawManySnowmen.c

ourDrawing.gif
This is where your drawing will appear!

ourDrawing.c
This is where you put your code!

snowman.gif drawSnowman.gif

The "make clean" command:

If your files get messed up and you want to start over, the "make clean"
command will get rid of all the extra files in your current directory so that you
can type "make" again from scratch.

What you need to do:

1. Look at the code in the C files shown above for examples of how to
make drawings.

o Compare the code to the pictures
o Notice how the code draws using lines, polygons and circles

2. Together with your lab partner, decide what you want to draw
o It should be something you can draw using lines, polygons, boxes

and circles.
o Plan out your drawing on paper.

3. Register your drawing on Gauchospace (see further instructions below
in Step 5)

4. Work on the code for your drawing (see further instructions below in
Step 6)

Step 5: Registering your drawing on Gauchospace

You need to log into Gauchospace and go to the discussion form near the top
of the main page labeled 'register your proj0 drawings here'.

Look to see if anyone else has already registered the same item that you want
to draw. You need to draw something that has not already been chosen in
order to get full credit.

You may make your item unique by adding a unique "twist"—e.g. if they are
drawing a "car", you can't just draw a "car", but you can draw:

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

 a car with a banana for a hood ornament
 a police car with red and blue lights
 a car with its hood up and steam rising from the engine.

Step 6: Working on your drawing

To make your drawing, you put code into the file ourDrawing.c.

The first step is to set up the function call to initDrawing with the correct
parameters:

initDrawing(&d, drawing_type, width, height, background_color);

The choices you'll need to make here are:

1. A black and white, or color drawing?

If you choose black and white, then you'll use DRAWINGTYPE_BW as
your drawing_type, and either BW_WHITE or BW_BLACK as the
background color.

If you choose color, you'll use DRAWINGTYPE_COLOR as your
drawing_type, and either COLOR_WHITE, COLOR_BLACK, or one of
the other choices in drawing.h such as COLOR_BLUE,
COLOR_YELLOW, etc. as your background color.

You can also use any six digit hexadecimal web color code, preceded
by 0x, for example: 0xBDB76B is a shade of khaki.

2. The size of your drawing?

The maximum width and height are currently 512 and 512, defined in
drawing.h. You may experiment with modifying the values in drawing.h if
you want to make a larger drawing—but keep in mind that you may run
into disk space issues if the drawing gets too big.

Q: There are two functions, drawShape1()and drawShape2(). Does that mean
we need to have two shapes in our drawing?

A: Not necessarily—It is ok to have just one shape if it is "reasonably
complex".

https://pconrad.github.io/old_pconrad_cs16/10S/projects/proj0/code/ourDrawing.c
https://pconrad.github.io/old_pconrad_cs16/10S/projects/proj0/code/drawing.h
http://en.wikipedia.org/wiki/Web_colors

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

As an example: If your one shape is just a bowling ball—i.e. a circle with three
little circles inside for the holes—you should probably make a second shape.

But if your shape is "the Santa Barbara Mission", complete with towers and
colums, then you only need one shape.

However, if you have a complex shape, you should break it down into smaller
functions. For example, if you draw a skateboard you might have
a drawSkateboard() function to draw the board, and that function might
call drawWheel() multiple times to draw the wheels (e.g. twice if it is a "side
view").

Finally, realize that drawShape1() and drawShape2() are just placeholder
names—you should rename them to whatever you are actually drawing.

If you aren't sure what is complex enough to be "reasonably complex", ask
your instructor or TA.

The next step is to add code into one of the two functions called drawShape1
and drawShape2. In each case, you should rename the function to a more
sensible name such as:

 drawCar
 drawAppleTree
 drawSkateboard
 etc.

Decide what parameters the drawing functions will take.

At a minimum, it should take a 'reference point', and at least one dimension—
a width, height, or radius—something that allows you to draw your picture at
different scales.

 The reference point is some point that everything else in the drawing is
calculated from.

o It could be the center of the drawing, or the upper left corner, or
the lower right corner, or the center bottom, for example

o What you choose as your reference point depends on the nature
of what you are drawing

o For an ice cream cone, it might be the bottom of the cone.
o For a sword, it might be the place where the handle meets the

blade.

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

 You should allow the user to specify at least one dimension for the
picture so that you can draw it at different sizes.

o Depending on the nature of the drawing, this might be height in
pixels (e.g. for Storke Tower), or radius in pixels (e.g. for a Pizza),
or width in pixels (for a flag).

o For some things, it may be more sensible to calculate additional
dimensions from those already given, e.g.

 calculate width automatically from the height (e.g. the width
of Storke Tower might be 1/8 or 1/10 of the height,

 calculate height automatically from width: (e.g. the height of
the US flag is the width/1.9)

 the length of the minute hand on a clock is 90% of the
radius

o For other things, it may be useful to specify both width and height
 That allows you to make, for example, tall skinny houses

and short fat houses.

What if my drawing has hard coded points?

That's ok as a starting point.

Hard coded points can easily be converted into a formula with a little extra
work—once you get the hang of it, it isn't that tough.

A drawing with hard coded points is also ok for partial credit.

What if I don't want my drawing to have "two" of something on it at
different sizes?
Or what if my converting my complex drawing from hard coded points is
going to be a major pain!

If you already have a drawing that you are very proud of, and you don't want
to mess up the artistry, but you still want full credit, here's a work around for
you.

This is also a way out if you are not feeling very creative and just want to get
this assignment done.

Make a drawing function to draw a drawing consisting of just the initials of
your first name, and that of your pair partner. For example, if Ian Smith were
to partner with Frieda Jones, their drawing might be IF, and might have points
like this:

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

We can label these points like this:

And then draw this with code like the following:

void drawIF(struct Drawing *d,

 struct Point ul, // upper left, or center bottom, or whatever

 double width,

 double height,

 int color)

{

 double letWidth = width * 0.45; // width of each letter

 double spaceBetween = width * 0.1; // space between letters

 struct Point ulI, umI, urI, llI, lmI, lrI; // I upper left, middle, right,

etc.

 struct Point ulF, mlF, llF, urF, mrF;// F upper, middle, and lower left,

etc.

 // set points of I across the top

 initPoint(&ulI, ul.x, ul.y);

 initPoint(&umI, ul.x + letWidth/2.0, ul.y);

 initPoint(&urI, ul.x + letWidth, ul.y);

 // set points of I across the bottom

 initPoint(&llI, ul.x, ul.y + height);

 initPoint(&lmI, ul.x + letWidth/2.0, ul.y + height);

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

 initPoint(&lrI, ul.x + letWidth, ul.y + height);

 // draw the I

 drawLine(d, ulI, urI, color); // across the top

 drawLine(d, llI, lrI, color); // across the bottom

 drawLine(d, umI, lmI, color); // down the middle

 // set points of F down the left hand side, top to bottom

 initPoint(&ulF, ul.x + letWidth + spaceBetween, ul.y);

etc...

}

With this in place, you can now "tag" your drawing with two tags of different
sizes and colors, to create an effect something like this:

With function calls like these:

drawIF(&d,makePoint(10,20),20,80, COLOR_RED);

drawIF(&d,makePoint(265,120),30,20, COLOR_GREEN)

If you do this, then even if your main drawing is hard coded and can't be
scaled, you'll get full credit for having created at least one drawing that can be
scaled and relocated (i.e. your tag), and you wont have to mess up the artistic
integrity of your main drawing.

Why having a drawing in two places at different sizes is so important

The reason it is so important to have a drawing element that appears at
different places and with different sizes is that this shows you really
understand how to apply the idea of abstraction—which is one of the central
ideas in Computer Science.

Finishing up

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

You are ready to move on to scripting and submitting when:

 Your drawing appears on your web page
at http://www.cs.ucsb.edu/~yourusername/cs16/proj0/ourDrawing.g
if

 Your drawing has at least one element that
o appears at two different places
o at two different sizes,
o as a result of two calls to the same function with different

parameters

Step 7: Script and submit

To script and submit, create a script proj0.txt in which you:

 cd into your ~/cs16/proj0 directory and type pwd to show you are there
 type make clean
 type make
 type make clean again
 exit the script

Check the web site one last time to make sure that your drawing appears
there under the
name http://www.cs.ucsb.edu/~yourusername/cs16/proj0/ourDrawing.gif.

Then, submit the contents of your proj0 directory via:

turnin proj0@cs16 proj0

Evaluation and Grading (300 pts total—but counts
double, i.e. 600pts)

* Note that since Gauchospace currently has a maximum point value of 300,
we'll compute a grade out of 300 points, and then enter it in Gauchospace
twice.

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

 (30 pts) Registering drawing on Gauchospace so that it does not
duplicate another drawing.

 (30 pts) Scripting and submitting according to instructions
 (40 pts) Submitting on time (note: after midnight 06/01, NO CREDIT

FOR THIS PROJECT)
 (100 pts) Drawing something interesting with code.

o 50 pts is at risk here for style issues, e.g. choice of variables
names, commenting, etc.

o 50 pts is for code that works—i.e. that draws something.
 (50 pts) Drawing appears on web site (this should come for free)
 (50 pts) Code and drawing contains at least one item that appears at

different positions and sizes.

Extra Credit Opportunity

We will have a competition for the best pictures—there will be prizes for the
most original, most artistic, and the best code. Some of these will be judged
by the students in the class, others by the course teaching staff (instructor and
TAs.) The number of points to be awarded in each category will be
determined later—but what is certain is that to be eligible for the extra credit,
you MUST submit your project on time, i.e. no later than midnight Wednesday
05/26.

Due Date

 Midnight Wednesday 05/26—you must meet this deadline to be eligible
for the extra credit competition.

 Accepted until midnight Tuesday 06/01 with -40 deduction.
 NOT ACCEPTED after midnight Tuesday 06/01

o If you aren't done by 11pm 06/01, go ahead and SUBMIT WHAT
YOU HAVE—even if it isn't perfect yet.

o Getting some points (partial credit) is better than getting a zero.

Advanced stuff:

For students that really want to go "beyond the call of duty": here are some
extra things you may like to experiment with.

 Recursive Fill: recFill.c

https://pconrad.github.io/old_pconrad_cs16/10S/projects/proj0/code/recFill.c

“Simple Graphics” by Phill Conrad is licensed under CC BY-NC. Accessed from www.engage-csedu.org.

o Note: if you work with recFill, you may need to increase the
available stack space by typing:
ulimit -s 1000000 at the shell prompt before running your program.

 Color gradients: colorFunc.c, gradientExample.c, testColor.c, example
image

Copyright 2010, Phillip T. Conrad, CS Dept, UC Santa Barbara. Permission to
copy for non-commercial, non-profit, educational purposes granted, provided
appropriate credit is given; all other rights reserved.

https://pconrad.github.io/old_pconrad_cs16/10S/projects/proj0/code/colorFunc.c
https://pconrad.github.io/old_pconrad_cs16/10S/projects/proj0/code/gradientExample.c
https://pconrad.github.io/old_pconrad_cs16/10S/projects/proj0/code/testColor.c
https://pconrad.github.io/~pconrad/cs16/proj0/gradientExample.gif
https://pconrad.github.io/~pconrad/cs16/proj0/gradientExample.gif

