
Problem 4: Secret Sharing and Lagrange

Steganography [30 points; individual only]

Copied from:

https://www.cs.hmc.edu/twiki/bin/view/CS5/Secr
etSharingBlack on 3/22/2017

You've been hired by the Bank of Pasadena (BoP) to help them with their

secret-sharing security protocols. The plan is to use the Lagrange
Polynomials method that we saw in class! Specifically, we want to distribute
pieces of a secret to a large number n of "trustees" so that any k of those

"trustees" can reproduce the secret but any fewer trustees who collude have
essentially no useful information. Both n and k will be parameters that can

be selected by the bank administrators.

Recall that when we wish for k trustees to recreate the secret:

• The secret is a random polynomial of degree k-1, i.e., a polynomial of

the form a * X**(k-1) + a * X**(k-2) + ... where a, b, etc. are random

coefficients. For simplicity, we'll limit each of those coefficients to be

random positive integers in the range 1 to 1000. (In real life, we'd
probably use a much larger range of positive integers—say between 1
and a trillion—but you're welcome to use numbers as small as 1000

here if you wish.)
• In fact, rather than having the secret be the polynomial itself, we can

make the secret a single point on that polynomial! Better yet, we can

make the secret a single number: The y-intercept of the polynomial
(the y-coordinate when the polynomial is evaluated at x=0). This
number will be the actual secret that the trustees will attempt to

reconstruct.
• Once we have that polynomial, we provide each of the n trustees with

a randomly selected point on the polynomial such that each point has

a unique x-coordinate.
• Any k trustees who get together with their pieces of the secret (their

points) can uniquely recreate the polynomial. Any fewer

than k trustees have no more information about the polynomial than

they could have guessed by themselves! ("Super spiffy!" is BoP's
corporate motto…)

Your boss at BoP has asked you to write four functions:

• create_random_poly(degree, yint) takes two arguments:

https://www.cs.hmc.edu/twiki/bin/view/CS5/SecretSharingBlack
https://www.cs.hmc.edu/twiki/bin/view/CS5/SecretSharingBlack

o degree, the degree of the almost-entirely-random polynomial to

create

o yint, the desired y-intercept of the (otherwise) random

polynomial it creates

With these arguments, create_random_poly should return an almost-

entirely-random polynomial of degree degree whose only non-random

coefficient is the y-intercept, which should be yint. You should use

random coefficients from 1 to 1000 (it doesn't matter if it's inclusive or

not…) for the other pieces of the polynomial.

In addition, you may represent your polynomial however you'd like!
The reason we don't specify this is that we will only test it with the

following evaluation function:

• eval_poly(poly, x) also takes two arguments:

o poly, which is the result returned by your create_random_poly,

above
o x, the x value to be fed into the polynomial poly

With these arguments, eval_poly should return poly(x), the numeric

value of the polynomial poly at the value x. We will test this mostly at x

= 0, but you will want to use it to generate other points, specifically in

this next function, distributeSecret:

• distributeSecret(n, k, secret) takes three arguments:

o n, which is the number of points this function will return (as a list

of lists). You may assume that n ≥ 1.

o k, the number of the above n points required to reconstruct the

"secret." You may assume that k ≥ 1 and k ≤ n

o secret, the secret value that should be the y-intercept (yint) of

the secret polynomial you will create!

With these arguments, distributeSecret should return a list of n lists.

Each of those inner lists is of the form [x,y] and is a point on the

secret polynomial with a distinct x value. With any k of those n points,

the secret should be recoverable. In fact the fourth and final function
will do that recovery:

• eval_pointspoly(points, x) takes two arguments:

o points is a list of points (in the form returned

by distributeSecret)

o x is simply an x-value at which the polynomial (defined

by points) is to be evaluated.

With these arguments, eval_pointspoly should create the polynomial

that passes through the points in points and then evaluate that

polynomial at x. It should return the resulting y-value. For our

application, as long as points has k of the points returned

by distributeSecret, the result of calling eval_pointspoly(points,

0) should be the original secret. With fewer than k points, it shouldn't

work (at least, not in general). There may be a bit of floating-point

imprecision (we ask you to comment on this—see below). Also, check
your implementations against the examples provided.

There is likely to be some numerical imprecision
when eval_poly_from_points attempts to "build" and evaluate the

Lagrange polynomial. Due to floating-point imprecision, the value

returned by eval_poly_from_points(pointList, 0) may differ from the

original y-intercept, which is the original "secret."

In a comment in your code, explain how much "slack" would be
needed to allow for this imprecision; that is, try several tests, and
write a few sentences about what tests you tried and how far

away the result of eval_poly_from_points(pointList, 0) is from the

original secret.

If you get stuck or are unsure how to approach the problem, refer to the

lecture slides or check out Wolfram's page on Lagrange polynomials.

Examples to try

Try these out to make sure everything is working:

In [1]: eval_pointspoly([[1, 1], [2, 2]], 4)

Out[1]: 4.0

In [2]: eval_pointspoly([[1, 1], [2, 4], [3, 9]], 4)

Out[2]: 16.0

In [3]: POLY = create_random_poly(2, 42)

In [4]: print POLY

http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html

Out[4]: [480, 551, 42] # your representation may differ!!

In [5]: eval_poly(POLY, 0) # the y-int should be 42

Out[5]: 42

In [6]: eval_poly(POLY, 1) # your value will probably be

different

Out[6]: 1073

In [7]: eval_poly(create_random_poly(3, 9001), 0)

Out[7]: 9001

In [8]: POINTS = distributeSecret(5, 3, 42)

In [9]: POINTS # your points will be different!

Out[9]: [[1.0, 1042.0], [2.0, 2216.0], [3.0, 3564.0], [4.0,

5086.0], [5.0, 6782.0]]

In [10]: eval_pointspoly(POINTS[0:3], 0) # but with 3 of the 5,

evaluated @ 0, it should yield the secret

Out[10]: 42.0

In [11]: eval_pointspoly(POINTS[0:2], 0) # with too few, it

won't be the secret (in general)

Out[11]: -132.0

In [12]: eval_pointspoly(POINTS[1:3], 0) # again

Out[12]: -480.0

In [13]: eval_pointspoly(POINTS[1:4], 0) # any three should

suffice to obtain the secret.

Out[13]: 42.0

Please design your program carefully. You'll certainly need some helper

functions beyond the two functions that we've asked for here. Please follow
the same design guidelines outlined in the Nim and Mastermind problems.

Extra credit: perfectly-precise polynomials!

For up to +10 bonus points, avoid the floating-point imprecision and

"slack" value entirely by operating exclusively with integers! To do this you'll
need to use modular arithmetic where the modulus is a prime number. That

is, you'll need to choose some large prime number p, and any addition or

multiplication that you do will be mod p so that numbers p or larger wrap back

to 0.) For example, if the prime modulus you chose was 5, then 2+4 = 1
(mod 5) and -1 = 4 (mod 5). Of course, your modulus should be much
larger than 5. Doing business this way is called operating in a "finite field";

this technique is used in many modern cryptographic protocols.

So that we can check your extra-credit functions, write four variants of the
above functions, named with a following _p:

• create_random_poly_p
• eval_poly_p
• distributeSecret_p
• eval_pointspoly_p

We will check these in the same way as above, but they should not use

floating-point numbers at all. You can choose your own large prime for use
here (please do make it over 9,000).

Note that you (probably) shouldn't have to change anything to

make create_random_poly_p and eval_poly_p — but please do make new

functions with these new names. For distributeSecret_p you will likely only

need to make one small change. (Hint: Remember to keep the points in the

finite field!) Depending on your implementation,eval_pointspoly_p may

require a decent amount of modification. Most importantly, instead of setting
up a numerator and dividing it by a denominator, you will need to multiply:

numerator * mod_inverse(denominator, yourPrime)

in addition to your modular addition and multiplication. You will need the

following helper functions, extendedGCD(a,b) and mod_inverse(k, prime).

Try reading them over to understand them, and note that these functions,
while not necessarily intuitive, are optimized for speed.
def extendedGCD(a,b):

 """calculates the extended greatest common denominator,

 using the extended Euclidean algorithm

 inputs: two integers a and b

 output: a tuple of form (GCD, x, y) where x and y are

 of the form such that a*x + b*y = GCD

 """

 x0, x1, y0, y1 = 1, 0, 0, 1

 while b != 0:

 q, a, b = a // b, b, a % b

 x0, x1 = x1, x0 - q * x1

 y0, y1 = y1, y0 - q * y1

 return a, x0, y0

def mod_inverse(k, prime):

 """calculates the multiplicative inverse of k mod prime

 such that k * mod_inverse(k, prime) % prime = 1

 """

 k = k % prime # k is now always positive

 y = extendedGCD(prime, k)[2] # find y such that 1 =

(prime * x) + (k * y)

 return y % prime # note that if we know x and

y to be integers, and setting x

 # to be negative, we have (k

* y) - (prime * x) = 1, and if we

 # note that -(prime * x) is

equivalent to %prime, then we have found

 # y * k % prime = 1, which

means y is the multiplicative inverse of k mod prime

Submit

Please submit your code to the usual in a file called hw8pr4.py

	Problem 4: Secret Sharing and Lagrange Steganography [30 points; individual only]
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/SecretSharingBlack on 3/22/2017
	Examples to try
	Extra credit: perfectly-precise polynomials!
	Submit

