
Problem 4: Secret Sharing and Lagrange 

Steganography [30 points; individual only] 

Copied from: 

https://www.cs.hmc.edu/twiki/bin/view/CS5/Secr
etSharingBlack on 3/22/2017 

You've been hired by the Bank of Pasadena (BoP) to help them with their 

secret-sharing security protocols. The plan is to use the Lagrange 
Polynomials method that we saw in class! Specifically, we want to distribute 
pieces of a secret to a large number n of "trustees" so that any k of those 

"trustees" can reproduce the secret but any fewer trustees who collude have 
essentially no useful information. Both n and k will be parameters that can 

be selected by the bank administrators. 

Recall that when we wish for k trustees to recreate the secret: 

• The secret is a random polynomial of degree k-1, i.e., a polynomial of 

the form a * X**(k-1) + a * X**(k-2) + ... where a, b, etc. are random 

coefficients. For simplicity, we'll limit each of those coefficients to be 

random positive integers in the range 1 to 1000. (In real life, we'd 
probably use a much larger range of positive integers—say between 1 
and a trillion—but you're welcome to use numbers as small as 1000 

here if you wish.) 
• In fact, rather than having the secret be the polynomial itself, we can 

make the secret a single point on that polynomial! Better yet, we can 

make the secret a single number: The y-intercept of the polynomial 
(the y-coordinate when the polynomial is evaluated at x=0). This 
number will be the actual secret that the trustees will attempt to 

reconstruct. 
• Once we have that polynomial, we provide each of the n trustees with 

a randomly selected point on the polynomial such that each point has 

a unique x-coordinate. 
• Any k trustees who get together with their pieces of the secret (their 

points) can uniquely recreate the polynomial. Any fewer 

than k trustees have no more information about the polynomial than 

they could have guessed by themselves! ("Super spiffy!" is BoP's 
corporate motto…) 

Your boss at BoP has asked you to write four functions: 

• create_random_poly(degree, yint) takes two arguments: 
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o degree, the degree of the almost-entirely-random polynomial to 

create 

o yint, the desired y-intercept of the (otherwise) random 

polynomial it creates 

With these arguments, create_random_poly should return an almost-

entirely-random polynomial of degree degree whose only non-random 

coefficient is the y-intercept, which should be yint. You should use 

random coefficients from 1 to 1000 (it doesn't matter if it's inclusive or 

not…) for the other pieces of the polynomial.  

 
In addition, you may represent your polynomial however you'd like! 
The reason we don't specify this is that we will only test it with the 

following evaluation function: 

• eval_poly(poly, x) also takes two arguments: 

o poly, which is the result returned by your create_random_poly, 

above 
o x, the x value to be fed into the polynomial poly 

With these arguments, eval_poly should return poly(x), the numeric 

value of the polynomial poly at the value x. We will test this mostly at x 

= 0, but you will want to use it to generate other points, specifically in 

this next function, distributeSecret: 

• distributeSecret(n, k, secret) takes three arguments: 

o n, which is the number of points this function will return (as a list 

of lists). You may assume that n ≥ 1. 

o k, the number of the above n points required to reconstruct the 

"secret." You may assume that k ≥ 1 and k ≤ n 

o secret, the secret value that should be the y-intercept (yint) of 

the secret polynomial you will create! 

With these arguments, distributeSecret should return a list of n lists. 

Each of those inner lists is of the form [x,y] and is a point on the 

secret polynomial with a distinct x value. With any k of those n points, 

the secret should be recoverable. In fact the fourth and final function 
will do that recovery: 

• eval_pointspoly(points, x) takes two arguments: 

o points is a list of points (in the form returned 

by distributeSecret) 



o x is simply an x-value at which the polynomial (defined 

by points) is to be evaluated. 

 
With these arguments, eval_pointspoly should create the polynomial 

that passes through the points in points and then evaluate that 

polynomial at x. It should return the resulting y-value. For our 

application, as long as points has k of the points returned 

by distributeSecret, the result of calling eval_pointspoly(points, 

0) should be the original secret. With fewer than k points, it shouldn't 

work (at least, not in general). There may be a bit of floating-point 

imprecision (we ask you to comment on this—see below). Also, check 
your implementations against the examples provided.  

 
There is likely to be some numerical imprecision 
when eval_poly_from_points attempts to "build" and evaluate the 

Lagrange polynomial. Due to floating-point imprecision, the value 

returned by eval_poly_from_points(pointList, 0) may differ from the 

original y-intercept, which is the original "secret."  
 

In a comment in your code, explain how much "slack" would be 
needed to allow for this imprecision; that is, try several tests, and 
write a few sentences about what tests you tried and how far 

away the result of eval_poly_from_points(pointList, 0) is from the 

original secret. 

If you get stuck or are unsure how to approach the problem, refer to the 

lecture slides or check out Wolfram's page on Lagrange polynomials. 

 

Examples to try 

Try these out to make sure everything is working: 

In [1]: eval_pointspoly([[1, 1], [2, 2]], 4) 

Out[1]: 4.0 

 

In [2]: eval_pointspoly([[1, 1], [2, 4], [3, 9]], 4) 

Out[2]: 16.0 

 

In [3]: POLY = create_random_poly(2, 42) 

 

In [4]: print POLY 
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Out[4]: [480, 551, 42]   # your representation may differ!! 

 

In [5]: eval_poly(POLY, 0)    # the y-int should be 42 

Out[5]: 42 

 

In [6]: eval_poly(POLY, 1)    # your value will probably be 

different 

Out[6]: 1073 

 

In [7]: eval_poly(create_random_poly(3, 9001), 0) 

Out[7]: 9001 

 

In [8]: POINTS = distributeSecret(5, 3, 42) 

 

In [9]: POINTS   # your points will be different! 

Out[9]: [[1.0, 1042.0], [2.0, 2216.0], [3.0, 3564.0], [4.0, 

5086.0], [5.0, 6782.0]] 

 

In [10]: eval_pointspoly(POINTS[0:3], 0)  # but with 3 of the 5, 

evaluated @ 0, it should yield the secret 

Out[10]: 42.0 

 

In [11]: eval_pointspoly(POINTS[0:2], 0)  # with too few, it 

won't be the secret (in general) 

Out[11]: -132.0 

 

In [12]: eval_pointspoly(POINTS[1:3], 0)  # again 

Out[12]: -480.0 

 

In [13]: eval_pointspoly(POINTS[1:4], 0)  # any three should 

suffice to obtain the secret. 

Out[13]: 42.0 

 

Please design your program carefully. You'll certainly need some helper 

functions beyond the two functions that we've asked for here. Please follow 
the same design guidelines outlined in the Nim and Mastermind problems. 

 

Extra credit: perfectly-precise polynomials! 

For up to +10 bonus points, avoid the floating-point imprecision and 

"slack" value entirely by operating exclusively with integers! To do this you'll 
need to use modular arithmetic where the modulus is a prime number. That 



is, you'll need to choose some large prime number p, and any addition or 

multiplication that you do will be mod p so that numbers p or larger wrap back 

to 0.) For example, if the prime modulus you chose was 5, then 2+4 = 1 
(mod 5) and -1 = 4 (mod 5). Of course, your modulus should be much 
larger than 5. Doing business this way is called operating in a "finite field"; 

this technique is used in many modern cryptographic protocols. 

So that we can check your extra-credit functions, write four variants of the 
above functions, named with a following _p: 

• create_random_poly_p 
• eval_poly_p 
• distributeSecret_p 
• eval_pointspoly_p 

We will check these in the same way as above, but they should not use 

floating-point numbers at all. You can choose your own large prime for use 
here (please do make it over 9,000). 

Note that you (probably) shouldn't have to change anything to 

make create_random_poly_p and eval_poly_p — but please do make new 

functions with these new names. For distributeSecret_p you will likely only 

need to make one small change. (Hint: Remember to keep the points in the 

finite field!) Depending on your implementation,eval_pointspoly_p may 

require a decent amount of modification. Most importantly, instead of setting 
up a numerator and dividing it by a denominator, you will need to multiply: 

numerator * mod_inverse(denominator, yourPrime) 

in addition to your modular addition and multiplication. You will need the 

following helper functions, extendedGCD(a,b) and mod_inverse(k, prime). 

Try reading them over to understand them, and note that these functions, 
while not necessarily intuitive, are optimized for speed. 
def extendedGCD(a,b): 

    """calculates the extended greatest common denominator, 

       using the extended Euclidean algorithm 

       inputs: two integers a and b 

       output: a tuple of form (GCD, x, y) where x and y are 

               of the form such that a*x + b*y = GCD 

    """ 

    x0, x1, y0, y1 = 1, 0, 0, 1 

    while b != 0:                   

        q, a, b = a // b, b, a % b 

        x0, x1 = x1, x0 - q * x1 

        y0, y1 = y1, y0 - q * y1 

    return  a, x0, y0 



 

def mod_inverse(k, prime): 

    """calculates the multiplicative inverse of k mod prime 

       such that k * mod_inverse(k, prime) % prime = 1 

    """ 

    k = k % prime                   # k is now always positive 

    y = extendedGCD(prime, k)[2]    # find y such that 1 = 

(prime * x) + (k * y) 

    return y % prime                # note that if we know x and 

y to be integers, and setting x  

                                    # to be negative, we have (k 

* y) - (prime * x) = 1, and if we 

                                    # note that -(prime * x) is 

equivalent to %prime, then we have found 

                                    # y * k % prime = 1, which 

means y is the multiplicative inverse of k mod prime 

 

Submit 

Please submit your code to the usual in a file called hw8pr4.py 
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