
Black Lab 1: Recursion Muscles [30 points;

individual or pair]

Copied from:

https://www.cs.hmc.edu/twiki/bin/view/CS5/Func
tionFrenzyBlack2010 3/22/2017

This problem asks you to write the following Python functions *using
recursion* (not loops!) and to test these functions carefully.

You may use recursion, conditional statements (if, else, elif), and list or

string indexing and slicing. Note that some of these problems can be written
without using recursion, e.g. using map, filter, reduce, or other "mass-

processing" structures. However, the objective here is to build your
recursion muscles, so please stick to recursion. DO NOT use any loop

structures (while or for). Loops will make your recursion muscles weak and

flabby.

Try to keep your functions as "lean and clean" as possible. That is, keep

your functions short and elegant.

Do not use built-in functions (e.g. len, sum, etc.). However, your functions

may call other functions that you write yourself. Calling another function for

help will mostly be unnecessary, but it may be handy in a few places.

Be sure to include a docstring under the signature line of each function. The
docstring should indicate what the function computes (returns) and what its

arguments are or what they mean.

Please put all of your functions for this problem in a single file
called hw1pr1.py. Thus, all of the parts of this problem will be submitted in a

single file. Please be sure to name your functions exactly as specified
so that the graders can find them.

• dot(L, K) should return the dot product of the lists L and K. Recall that

the dot product of two vectors or lists is the sum of the products of the
elements in the same position in the two vectors. You may assume
that the two lists are of equal length. If they are of different lengths,

it's up to you what result is returned. If the two lists are both
empty, dot should return 0.0. Assume that the argument lists contain

only numeric values.
• In [1]: dot([5,3], [6,4]) <-- Note that 5*6 + 3*4 = 42

https://www.cs.hmc.edu/twiki/bin/view/CS5/FunctionFrenzyBlack2010
https://www.cs.hmc.edu/twiki/bin/view/CS5/FunctionFrenzyBlack2010

• Out[1]: 42

Besides the example above, try dot([1], []) and dot([], [42]) and a

few others of your own devising.

• explode(S) should take a string S and return a list of the characters

(each of which is a string of length 1) in that string. For example:
• In [1]: explode("spam")

• Out[1]: ['s', 'p', 'a', 'm']

•

• In [2]: explode("")

• Out[2]: []

Note that Python is happy to use either single quotes or double quotes
to delimit strings—they are interchangeable. But if you use a single
quote at the start of a string you must use one at its end (and

similarly for double quotes). For example:

In [1]: "spam" == 'spam'

Out[1]: True

• ind(e, L) accepts an element e and a sequence L, where by "sequence"

we mean either a list or a string (fortunately indexing and slicing work
the same for both lists and strings, so your ind function should be able

to handle both types of arguments!). Then ind should return the index

at which e is first found in L. Counting begins at 0, as is usual with

lists.

If e is NOT an element of L, then ind(e, L) should return an integer

that is exactly the length of L.

Remember, don't use the len function explicitly though! Your recursive

implementation can find the length by itself.
• In [1]: ind(42, [55, 77, 42, 12, 42, 100])

• Out[1]: 2

•

• In [2]: ind(42, list(range(0,100)))

• Out[2]: 42

•

• In [3]: ind('hi', ['hello', 42, True])

• Out[3]: 3

•

• In [4]: ind('hi', ['well', 'hi', 'there'])

• Out[4]: 1

•

• In [5]: ind('i', 'team')

• Out[5]: 4

•

• In [6]: ind(' ', 'outer exploration')

• Out[6]: 5

• removeAll(e, L) accepts an element e and a list L.

Then removeAll should return another list that is the same as L except

that all elements identical to e have been removed. Notice that e has

to be a top-level element to be removed, as the examples illustrate:
• In [1]: removeAll(42, [55, 77, 42, 11, 42, 88])

• Out[1]: [55, 77, 11, 88]

•

• # Below, 42 is NOT top-level!

• In [2]: removeAll(42, [55, [77, 42], [11, 42], 88])

• Out[2]: [55, [77, 42], [11, 42], 88]

•

• # Below, [77,42] IS top-level!

• In [3]: removeAll([77, 42], [55, [77, 42], [11, 42], 88])

• Out[3]: [55, [11, 42], 88]

Aside: It's possible to write removeAll so that it works even if the

second argument is a string instead of a list, but you do not need to do

so here.

• Recall that Python has a built-in function called filter that takes two

arguments: The first is a function f that accepts a single argument and

returns either True or False. Such a function is called a predicate. The

second argument to filter is a list L. The filter function returns a new

list that contains all of the elements of L for which the predicate

returns True (in the same order as in the original list L). For example,

consider the example below:
• In [1]: def even(x):

• ... if x % 2 == 0:

• ... return True

• ... else:

• ... return False

• ...

•

• In [2]: filter(even, [0, 1, 2, 3, 4, 5, 6])

• Out[2]: [0, 2, 4, 6]

In this example, the predicate even returns True if and only if its

argument is an even integer. When we invoke filter with

predicate even and the list [0, 1, 2, 3, 4, 5, 6] we get back a list of

the even numbers in that list. Of course, the beauty of filter is that

you can use it with all kinds of predicates and all kinds of lists. It's a
very general and powerful function! Your job is to write your own

version of filter, called myFilter, that uses recursion. Remember, your

implementation may use recursion, indexing and slicing, and
concatenation—but no built-in Python functions.

• deepReverse(L) accepts a list of elements, where some of those

elements may be lists themselves. deepReverse returns the reversal of

the list where, additionally, any element that is a list is also

deepReversed. Here are some examples:
• In [1]: deepReverse([1, 2, 3])

• Out[1]: [3, 2, 1]

•

• In [2]: deepReverse([1, [2, 3], 4])

• Out[2]: [4, [3, 2], 1]

•

• In [3]: deepReverse([1, [2, [3, 4], [5, [6, 7], 8]]])

• Out[3]: [[[8, [7, 6], 5], [4, 3], 2], 1]

For this problem, you will need the ability to test whether or not an
element in the list is a list itself. To this end, you can use the following
line of code, which tests whether or not x is a list:

if type(x) == type([1, 2, 3]):

 # if True you will end up here

else:

 # if False you will end up here

The list [1, 2, 3] could be replaced by any list—it's just important that

it be some list (even []). Python is answering the question, "is it the

case that x is a thing of the same type as [1, 2, 3] ?" Since [1, 2,

3] is a list, this is really just a sneaky way of asking "is x a list?

• letterScore(letter, scorelist) accepts a single letter string

called letter and a list, where each element in that list is itself a list of

the form [character, value]. In those inner lists, character is a single

letter and value is a number associated with that letter (e.g., its

Scrabble score). The letterScore function then returns a single

number, namely the value associated with the given letter. For

example, you can cut and paste the following Scrabble score list into
your hw1pr1.py file:

• scrabbleScores = [["a", 1], ["b", 3], ["c", 3], ["d", 2], ["e", 1],

• ["f", 4], ["g", 2], ["h", 4], ["i", 1], ["j", 8],

• ["k", 5], ["l", 1], ["m", 3], ["n", 1], ["o", 1],

• ["p", 3], ["q", 10], ["r", 1], ["s", 1], ["t", 1],

• ["u", 1], ["v", 4], ["w", 4], ["x", 8], ["y", 4],

• ["z", 10]]

If you include this in your file (outside of any function you define—for
example right after the header comments in your file)—

then scrabbleScores is a "global variable"; it can be referred to by any

function defined in that file and, more importantly for this example, it
can be used once we load in that file.

In [1]: letterScore("c", scrabbleScores)

Out[1]: 3

In [2]: letterScore("a", scrabbleScores)

Out[2]: 1

If the letter is not in the scorelist, letterScore should not crash.

Instead, it should return something sensible (such as 0). This is an

example of input validation—making sure your program behaves well
even if it is misused. (Bad input validation is the number-one cause of
computer security problems!)

• wordScore(S, scorelist) should accept a string S and a scorelist in the

format described above, and should return the Scrabble score of that
string. Again, wordScore should behave well if S contains letters not

found in scoreList. However, you are allowed to crash badly

if scoreList is in the wrong format (such as not being a list at all);

that's because we haven't yet learned the way to protect against that

kind of crash.

Here are some examples:

• In [1]: wordScore('spam', scrabbleScores)

• Out[1]: 8

•

• In [2]: wordScore("wow", [['o', 10], ['w', 42]])

• Out[2]: 94

Submit

Make sure your name and date are at the top of your file. Then, please
submit your functions on the submission system in a file called hw1pr1.py.

Please remember to name your functions exactly as they appeared in this
problem -- thanks!

	Black Lab 1: Recursion Muscles [30 points; individual or pair]
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/FunctionFrenzyBlack2010 3/22/2017
	Submit

