
Problem 2 SPAM: SPelling A la Millisoft (30

Points; Individual or Pair)

Copied from:

https://www.cs.hmc.edu/twiki/bin/view/CS5/SPA
M on 3/22/2017

Your functions for this problem should be in a file called hw3pr2.py.

OK, so the SPAM acronym is a stretch! Here is the gratuitous "true story":
You work at Millisoft, a leading software company. One day the CEO, Gill
Bates, comes into your office sipping on a Jolt Cola. "I've decided that

Millisoft is going to have a new spell checking product called "spam" and it's
yours to develop and implement! As an incentive, you'll get a lifetime supply
(two six-packs) of Jolt when it's done."

Spell checking of this type is both useful to those of us hoo hav trubbel
speling (or tpying) and also useful in biological databases where the user
types in a sequence (e.g. a DNA or amino acid sequence) and the system

reports back the near matches.

How do we measure the similarity of two strings? Recall from class that the
"edit distance" between two strings S1 and S2 is the minimum number of

"edits" that need to be made to the strings to get them to match. An "edit"

is either a replacement of a symbol with another symbol or the deletion of
a symbol. For example, the edit distance between "spam" and "xsam" is 2.

We can first delete the "x" in "xsam" leading to "sam" and then delete the
"p" in "spam" to also make "sam". That's two edits, for an edit distance of 2.
That's the best possible in this case. Of course, another possible sequence of

edits would have been to delete the "s" and "p" from "spam" to make "am"
and delete the "x" and "s" from "xsam" to to make also "am". That's 4 edits,
which is not as good as 2.

Here's the ED function that we wrote in class:

def ED(first, second):

 '''Returns the edit distance between the strings first and

second.'''

 if first == '':

 return len(second)

 elif second == '':

 return len(first)

 elif first[0] == second[0]:

https://www.cs.hmc.edu/twiki/bin/view/CS5/SPAM
https://www.cs.hmc.edu/twiki/bin/view/CS5/SPAM
https://www.cs.hmc.edu/twiki/bin/view/CS5/SPAM
https://www.cs.hmc.edu/twiki/bin/view/CS5/SPAM
http://en.wikipedia.org/wiki/Jolt_Cola

 return ED(first[1:], second[1:])

 else:

 substitution = 1 + ED(first[1:], second[1:])

 deletion = 1 + ED(first[1:], second)

 insertion = 1 + ED(first, second[1:])

 return min(substitution, deletion, insertion)

Now, here's ED in action:

In [1]: ED("spam", "xsam")

Out[1]: 2

In [2]: ED("foo", "")

Out[2]: 3

In [3]: ED("foo", "bar")

Out[3]: 3

In [4]: ED("hello", "below")

Out[4]: 3

In [5]: ED("yes", "yelp")

Out[5]: 2

It's cute, but it's slow!

Try your ED function on a few pairs of long words. For example, here's my

attempt to observe the extraordinary slowness of this program! Exercise
your originality in finding other pairs of very long words to try out!

In [1]: ED("extraordinary", "originality")

Wait for a bit—you will get an answer (it's 10).

Since the recursive program is very slow, Gill has asked you to reimplement
it using memoization. Write a new function called fastED(S1, S2) that

computes the edit distance using a global Python dictionary to memoize
previously computed results.

After writing fastED(S1, S2), test it to make sure that it's giving the "write"

answer. Here are a few more test cases:

In [1]: fastED("antidisestablishment", "antiquities")

Out[1]: 13

In [2]: fastED("xylophone", "yellow")

Out[2]: 7

In [3]: fastED("follow", "yellow")

Out[3]: 2

In [4]: fastEd("lower", "hover")

Out[4]: 2

topNmatches(word, nummatches,

ListOfWords)

Next, you'll write a function whose signature is

 def topNmatches(word, nummatches, ListOfWords)

which takes in

• word, a string which is the word to match (using fastED)

• nummatches, an integer which is 0 or greater

• ListOfWords, a list of strings against which to match word

and, from there, topNmatches should output the alphabetically-sorted list of a

total of nummatches words from ListOfWords that have the lowest edit-distance

scores with the input word

• you should be sure to return only N words. If there is a tie at the last

place among those N, there will be an ambiguity as to which words to

return
• we will not test it in those "tie" cases, however, so you're welcome to

handle that ambiguity as you see fit

Here are a couple of examples:

In [1]: topNmatches("spam", 3, ["spam", "seam", "wow",

"cs5blackrocks", "span", "synecdoche"])

Out[1]: ['seam', 'spam', 'span']

In [2]: topNmatches("spam", 1, ["spam", "seam", "wow",

"cs5blackrocks", "span", "synecdoche"])

Out[2]: ['spam']

we would not test the above example with nummatches == 2,

since the output would be ambiguous

And here are a few details that may be of help:

• You will need to find the score (edit distance) for each word in the

master list of words. One way to do this is to construct another list
that is just like your master list, except that each entry in that new list
will be a tuple of the form (score, word). For example, the tuple (42,

"spam") would mean that the word "spam" has edit distance 42 from the

word that the user entered. You can use map to build this list of tuples!

• You'll need to sort the words by score. While mergesort is very fast,
the amount of recursion that it requires will likely exceed the recursion

limit permitted by your computer. Therefore, use the very fast sorting
algorithm built into Python, which is named sort. This function is used

as follows: If L is the name of your list (it can have any name you like)

then the syntax L.sort() will modify L by sorting it in increasing order.

This will sort L but will not return anything. So, use the

line L.sort() rather than sortedList = L.sort(). It's a strange syntax,

but it works (and we'll talk about the reason for this syntax in a few
weeks.) You may wish to sort a list of items, each of which is a list or a
tuple. For example, if you have a list L that looks like this: [[42,

"hello"], [15, "spam"], [7, "chocolate"]] and you do L.sort(), it

will sort L using the first element in each list as the sorting key.

So, L.sort() in this case will change L to the list [[7, "chocolate"], [15,

"spam"], [42, "hello"]].

• You'll use sort again in order to get your ultimate list of words into

alphabetical order!

You'll put this together into an interactive program, known as SPAM in the

next part... .

SPAM!

Finally, your last task is to write a function called spam() that loads in a large

master list of words and then repeatedly does the following:

• The user is shown the prompt spell check> and prompted to type in a

word.

https://www.cs.hmc.edu/twiki/bin/view/CS5/SPAM

• If the word is in the master list, the program reports Correct. You can

test if a string is in a list by using the in keyword as in if "spam" in

["everyone", "loves", "spam"] returns True.

• If the word is not in the master list, the program should compute the
edit distance between the word and every word in the master list.
Then the 10 most similar words should be reported, in order of

smallest to largest edit distance. The program should also report how
long it took to find this list.

Here is an example of what your program will look like when running. The

actual times may vary from computer to computer, so don't worry if you see
different running times on your computer. Moreover, if there are ties in the
edit distance scores, you may break those ties arbitrarily when sorting.

In [1]: spam()

spell check> hello

Correct

spell check> spam

Suggested alternatives:

 scam

 seam

 sham

 slam

 spa

 span

 spar

 spasm

 spat

 swam

Computation time: 2.06932687759 seconds

Here are the ingredients that you will need:

• Download 3esl.txt into the same directory (folder) where your program

resides. This is our master list of words: It is simply a file with 21877
words in alphabetical order. Save this file on your machine. (On the
Macs, push control and mouse-click on this link and then choose to

save this link in a file.) Make sure that this file is in the same directory

as your program.
• The following three lines will open the file 3esl.txt, read it, and split it

into a list called words. Be sure these lines are INSIDE your spam

function and not at the top-level of the file (they will cause all of your
tests to fail!) So, the top of your function will look like this (with a
better docstring, for sure):

• def spam():

http://www.cs.hmc.edu/~cs5grad/cs5/3esl.txt

• """ docstring """

• f = open("3esl.txt")

• contents = f.read()

• words = contents.split("\n")

• You'll need to prompt the user for input. The Python
function input(S) displays the string S and then waits for the user to

enter a string and hit the return key. The string that was typed in by
the user is now the value returned by the input function. For example

 userInput = input("spell check> ")

displays the string spell check>, waits for the user to type in a string,

and then returns that string so that userInput now stores that string.

(You'll find that things look nicer if your prompt string ends with a
blank.)

• To compute the amount of time that transpires between two points in
your program, we recommend the following:

o First, have the line import time at the top of your program to

import the time package;

o Next, any time you like, call time.time() to capture the number of

seconds (a floating point number) that have elapsed since some
point in the past (perhaps when your program started, or

perhaps some other well known time—it doesn't really matter!).
By capturing time.time() at two different places and subtracting

the first value from the second, you can determine the elapsed

time in that part of the program. Here is an example:

 import time

 def time_example():

 yadda, yadda, yadda

 startTime = time.time()

 blah, blah, blah

 endTime = time.time()

 print("The elapsed time executing blah, blah, blah

was", endTime - startTime)

Submitting…

Submit your hw3pr2.py file. Do not submit your 3esl.txt file; it's a big file -

and we've got it!

When you submit, your file should be autograded -- be sure to check the
autograding results (there may be small errors you have time to fix and

resubmit!)

Also, be sure that there are no file-reading
or input lines outside the spam function (that will cause the autograding tests

to fail!)

	Problem 2 SPAM: SPelling A la Millisoft (30 Points; Individual or Pair)
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/SPAM on 3/22/2017
	It's cute, but it's slow!
	topNmatches(word, nummatches, ListOfWords)
	SPAM!
	Submitting…

