
Problem 2: Millisoft "Shapes" Revisited (35 

Points; individual only) 

Copied from: 
https://www.cs.hmc.edu/twiki/bin/view/CS5/MillisoftShapeBlack 

on 3/22/2017 

This is the sole individual only problem this week. 

The objective of this problem is get into "shape" as object-oriented designers 

and programmers. 

Shape Up! 

Begin by downloading and unzipping the code that we discussed/developed 
in class: 

• hw10pr2.zip 

The turtle package is fully documented on the Python turtle package site. 

Within that zip file you should find three files: 

• Vector.py 

• Matrix.py 
• Shapes.py 

Now, modify the Shapes.py file as follows: 

• Note that there is an error in the render function of the Circle class! In 

particular, the way that the turtle package renders a circle of a given 
diameter is not with the circle centered at the turtle's location but 
rather with the center located radius units left of the turtle. You can 

see this by just importing the turtle package in the Python interpreter 
and drawing a few turtles of different radii. Change the 
circle's render method so that the circle is actually rendered with its 

center at self.center. 

• Add another geometric shape of your choosing (e.g. triangle, polygon, 
etc.). Include a docstring that explains the arguments to the 

constructor (that is, the __init__ function). 

• Add a method called translate that takes a Vector as input and 

translates any of your current shapes by this Vector. To get the most 

https://www.cs.hmc.edu/twiki/bin/view/CS5/MillisoftShapeBlack
https://www.cs.hmc.edu/twiki/pub/CS5/MillisoftShapeBlack/hw10pr2.zip
http://docs.python.org/library/turtle.html


out of inheritance, this function should go in the Shape class. Any 

specific shape that can't use the general form of translate in 

the Shape class can override that general version of translate with its 

own version. 
• Modify the rotate method (again, in the Shape class with special cases 

in other shapes only where necessary) so that it has the following 

arguments: 
o theta: The rotation angle, in degrees. 

o rotateAbout: A vector (you can think of it as a point) such that 

the shape will be rotated about this point. The default value of 
this variable should be the origin (0, 0). Recall that the rotation 
algorithm that we saw in class—using a rotation matrix—rotates 

a point counter-clockwise around the origin. To rotate about the 
point rotateAbout with coordinates (rotateAbout.x, rotateAbout.y), 

we first imagine translating the point (rotateAbout.x, 

rotateAbout.y) so that it coincides with the origin. In reality that 

means that every point that we wish to rotate has to be 
translated by that same amount—namely by -rotateAbout.x in 

the x-dimension and -rotateAbout.y in the y-dimension. Now, we 

can rotate our newly translated point about the origin. Finally, 
after rotating that point, we "undo" the translation by translating 
back to its original frame of reference—namely by translating 

by rotateAbout.x in the x-dimension and by rotateAbout.y in the 

y-dimension. Basically, the idea here is to change the frame of 
reference so that we can rotate about the origin (which we can 

do with matrix multiplication) and then change the frame of 
reference back to its original state. 

• Add a method called scale that takes a single floating point 

number s as input and scales any of your current shapes by a factor 

of s about its center. That is, the center of the new scaled shape 

should be the same as the center of the original shape! (Translation 
will be required to make this work just like you did with rotation. Our 

scaling algorithm using matrices depended on the object being 
centered at the origin. So, we'll translate to the origin, scale, and 
translate back.) You should use matrix multiplication here to do the 

actualy scaling (but not the translation) of the points in the 
shape. scale should be defined in the Shape class and only overridden in 

specific shapes where necessary. 

• Write a flip method that flips any shape with respect to a given line. 

The line is specified by passing flip two inputs, each of which is 

a Vector. These two vectors represent two points and thus define a line 

(the line used for the flip). This function should be defined in 
the Shape class and only overridden for specific shapes where 



necessary. Note:Flipping about an arbitrary line may seem hard. 
Notice though that flipping about one of the axes (x- or y-axis) is 

easy! So, consider transforming your flip line so that it coincides with 
one of the two axes. What that really means is transforming 
(translating and rotating) your points by that "amount". Then, you can 

flip about the axis that you chose. Then you can "undo" the 
transformation to bring your points back to their original frame of 
reference! (You might need to do a little trigonometry here.) 

• For +5 Optional Bonus Points... Snoop around on the web or in a 
linear algebra book to learn how to compute the area of any 2D 
polygon (assuming that its edges don't intersect one another and that 

its vertices are given in counter-clockwise orientation) and add 
an area() function to your Shape class that returns the area of any 2D 

polygon (again, you may assume that the vertices are always specified 

as you walk around the boundary of the polygon counter-clockwise). If 
you're having difficulty reading in the vertices, make sure to carefully 
read over the Vector.py file. 

Ship Out! 

Now, use your modified Shapes.py class to write a program in a file 

called Pretty.py that draws a pretty picture that showcases all of the shapes 

and their methods. The grutors and the profs will be looking forward to ooh-
ing and aah-ing over your pictures. 

Your program will begin with: 

from Shapes import * 

The actual function that draws the picture should be called main() and it 

should be invoked automatically using the "main trick". 

Finally, submit your files in a newly-zipped hw10pr2black.zip file. This should 

include 

• your Shapes.py file, 

• your Vector.py file, 

• your Matrix.py file, and 

• your Pretty.py file. 

 

 


	Problem 2: Millisoft "Shapes" Revisited (35 Points; individual only)
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/MillisoftShapeBlack on 3/22/2017
	Shape Up!
	Ship Out!


