
Meme Magic: Project in Sprints
John R Hott

University of Virginia
Charlottesville, Virginia, USA

jrhott@virginia.edu

Derrick Stone
University of Virginia

Charlottesville, Virginia, USA
dstone@virginia.edu

Nada Basit
University of Virginia

Charlottesville, Virginia, USA
basit@virginia.edu

Daniel Graham
University of Virginia

Charlottesville, Virginia, USA
dgg6b@virginia.edu

Course Data Structures
Programming Language Java
Knowledge Unit Software Development Methods
CS Topics Object-Oriented Programming, Inheritance, Soft-
ware Development and Design

SYNOPSIS
Meme Magic is a series of six assignments intended to pro-
vide progressive exposure to programming in Java using a
popular and recent concept: Memes. Memes utilize an image
conveying a concept or feeling with a caption provided by
the Meme author. The series of assignments, designed as
sprints in the context of a larger project, begin with the de-
sign and scaffolding of Java classes needed towrite a program
to produce text-based Memes and end with a fully-functional
graphical user interface. For a detailed list of learning goals,
please see the Learning Goals section. In the first sprint,
students depict the overall project structure of a text-based
meme application using Unified Markup Language (UML)
and write method stubs in Java. In each of the next two
sprints, students implement half of the specified function-
ality and integrate those components to a fully working
application. Students are asked to add Comparators to sort
memes to their application in sprint 4 and to unit test all of
their code using JUnit in sprint 5. In the final sprint, students
extend the functionality once more to a graphical user in-
terface to experience event-driven programming. Once the
full sequence is completed, students will be able to generate
and save graphical memes. Steps and learning concepts in-
clude designing the project structure using UML diagrams,

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.
ACM EngageCSEdu, July 2022.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9449-9/22/07.
https://doi.org/10.1145/3519933

implementing that design, unit testing with JUnit1, and event
driven programming using Swing.

CCS CONCEPTS
• Social and professional topics → Computing educa-
tion; Student assessment.

KEYWORDS
Software Design, Object-Oriented Programming, Unit Test-
ing, Data Structures, Event-driven programming, Graphical
User Interface

ACM Reference Format:
John R Hott, Derrick Stone, Nada Basit, and Daniel Graham. July
2022. Meme Magic: Project in Sprints. In ACM EngageCSEdu. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3519933

1 ENGAGEMENT HIGHLIGHTS
Meme Magic engages the learner with content relevant to a
modern student by leveraging a recent social media phenom-
enon: the meme. Students have the opportunity to create
memes and are encouraged to share them at the culmination
of the series of assignments. This series utilizes a modern
technique of software development: breaking a large, com-
plex problem into smaller deliverable sections intended to
simulate an Agile approach. Each section of the project, or
sprint, has key learning goals emphasized in the work as-
signed, affording the learner an opportunity to understand
the object-oriented approach one layer at a time. This ap-
proach also helps the learner to complete a more advanced
project that might otherwise be accomplished by students
in a CS2-level course.

Given the prevalence of memes across most social media
platforms, and their familiarity of and use by students from
different backgrounds, supplementary assignments to this
series can leverage existing interest to incorporate class dis-
cussions, presentations, or activities on ethical or societal

1https://junit.org/junit4/

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3519933
https://doi.org/10.1145/3519933
https://junit.org/junit4/


issues surrounding the creation and dissemination of memes.
Relevant topics may include:

• Copyright considerations: including discussions on the
implications of using images that are not your own
in creating a meme, providing appropriate attribution,
etc;

• Women (and other prominent figures) in computer
science: encouraging students to research prominent
computer scientists and use their stories and images
for the memes they create, as well as asking students
to give a short presentation about these prominent
figures of computer science using their memes;

• Inclusivity: discussing the use of inclusive or contentious
images and language in memes, with an opportunity
to bring in a guest speaker from the liberal arts or the
school of education;

• Art and design: coordinating with instructors or prac-
titioners in the Arts to facilitate discussions or cre-
ate activities about selecting an image, color schemes,
choice of font, composition, graphic design, etc; and

• "Netiquette": including activities or discussions on the
impact certain images have on different individuals
and groups in society.

2 RECOMMENDATIONS
This series of assignments has been developed for students
with some exposure to programming, though students do
not necessarily need prior exposure to the Java program-
ming language. It is therefore recommended that this project
follows some introductory material on Java. It may also be
helpful to provide instructions on (i) designing classes using
Unified Markup Language (UML), and (ii) good coding prac-
tices such as writing thorough comments, including the use
of JavaDoc style commenting.

Given that each sprint in the series builds on prior sprints
(to work on assignment 𝑥 , the students must have completed
assignment 𝑥 − 1), instructors should help students avoid
falling behind. One strategy to avoid having an individual
student fall behind is to have them work with a group of
3-4 other students. An approach that preserves individual
work is to have the students discuss their approach but not
share code until a sprint has been completed. This ensures
everyone has a fully working version before the start of the
next sprint. Another approach might be to allow students
to fully collaborate, but it may be hard to ascertain if all
students are internalizing the learning objectives. If each
sprint is assessed independently from prior submissions, this
provides a mechanism for students to be prepared for the
next sprint while continuing to assess individual student
contributions.

3 LEARNING OBJECTIVES
Throughout theMemeMagic project in sprints, the following
learning objectives are addressed:
Sprint 1. Creating UML (Unified Modeling Language) dia-

grams, implementing class design consisting ofmethod
stubs, utilizing style guidelines for increased read-
ability and consistency, and including appropriate
comments for clarity and readability;

Sprint 2. Implementing default and overloaded constructors,
implementing getter and setter (accessor and muta-
tor) methods, utilizing an array to store reference ob-
jects, experiencing inheritance from Object: over-
riding toString() and equals() methods, and in-
corporating main-method testing to check correct-
ness (i.e., behavior matches specifications);

Sprint 3. Utilizing ArrayList to store and organize objects,
integrating newly implemented classes into an ex-
isting code base, and incorporating main-method
testing to check correctness (i.e., behavior matches
specifications);

Sprint 4. Implementing the Comparable interface to produce
a natural ordering of objects, implementing the
Comparator interface to produce additional order-
ings of objects, sorting lists of objects utilizing the
Comparable and Comparator interfaces, using TreeSet
to store unique objects defined by hashCode() and
equals(), and accessing and referencing Java API
for objects;

Sprint 5. Writing unit tests for Java using JUnit and calculat-
ing code coverage of unit testing; and

Sprint 6. Implementing graphical user interfaces (GUIs) us-
ing event-driven programming, organizing GUI con-
tent using Java Swing containers and components,
and handling exceptions with try/catch blocks.

4 PITFALLS
The major pitfall to avoid is the case in which a student does
not complete any one assignment. Subsequent assignments
will be harder or impossible without the preceding work,
thus putting the student at a disadvantage. Along with en-
couraging students to collaborate and share code after each
sprint has completed, other possible countermeasures to this
approach are:
(1) Providing a working solution at the end of each sprint,
(2) Having Instructor or Teaching Assistant-led reviews

of each sprint’s requirements, and
(3) Utilizing pair programming or assigning the sprints to

small groups of students.
One possible pitfall with assigning teams to work on the

sprints is the possibility of some students not fully contribut-
ing. To mitigate this, student groups may be asked to submit

2



a short breakdown of the contributions of each member for
each assignment. Alternatively, peer evaluations can be con-
ducted via an online form at the end of each sprint or after
the completion of the series. The instructor should make
it clear at the start of the course that peer evaluations will
factor into sprint grades.
While pair programming and group environments pro-

vide many benefits, further issues may arise if collaboration
policies are unclear. In an employment situation, the most
important result is the outcome of the assignment. In con-
trast, the most important result in a learning environment is
individual student comprehension and retention, which is
not easily measurable without some degree of identifiable
individual work.

5 MARKING GUIDELINES
We encourage a mixture of automated grading and manual
inspection. Since the first sprint comprises the design stage,
creating UML diagrams for classes in the project as well as
writing class andmethod stubs, we suggest manually grading
the diagrams for completion and correctness.We additionally
provide unit tests to check that all classes and methods stubs
have been correctly implemented. This process facilitates the
implementation of future sprints, since the next two sprints
encompass completing the designed functionality.

Depending on course size, for the next three implementation-
heavy sprints, we encourage an 80-20 score breakdown in
which 80% is provided by an auto-grader and 20% is manual
inspection. In these sprints, we limited the number of sub-
missions to the automated platform to encourage students
to plan their implementations and test their code using main
method testing before submission. We inspected their tests
manually, assigning 15% of the grade based on testing. Lastly,
5% was reserved for code readability.

In sprint 5, students are asked to write JUnit tests for their
entire code base. We encourage scoring this based on the
amount of code coverage their tests employ. We provide
an example auto-grader that assigns a score proportional to
code coverage, requiring at least 50% coverage. An additional
10% is reserved for manual inspection to verify that students
are still following good coding practices.

For the final sprint, since GUIs are difficult to automatically
grade, we encourage assigning the entire grade manually.
To facilitate this process, we asked all students to create a
video describing their implementation and showing their
code, launching their program multiple times, and walking
through using their GUI to create a meme.

6 EXTENSIONS
We envision a number of extensions to Meme Magic that can
be applied based on differing course learning objectives or

instructor preferences. By using Java as the underlying pro-
gramming language, the final product may easily be adapted
to other platforms. Here are some examples:

(1) Replace sprint 6 to produce an Android app instead of a
desktop-based application by replacing MemeMagic.java
scaffolding with an Android-based implementation;

(2) Update sprint 6 to utilize the JavaFX framework instead
of Java Swing;

(3) Encourage creativity in sprint 6 through asking stu-
dents to modify the GUI by redesigning the overall
GUI layout or including colors, additional elements,
or text in different locations in the produced meme
image;

(4) Increase difficulty of the last assignment by tasking
students with creating their own GUI based on func-
tional requirements of generating graphical memes
without the use of scaffolding code;

(5) Expand the capabilities of the GUI to organize and
view previously-created memes by incorporating the
functionality of the Feed and User classes;

(6) Ask students to present their final GUI in a class expo
to give them practice presenting in front of others; or

(7) Facilitate community among students by encouraging
them to publish their memes on a course discussion
site.

7 MATERIALS
We provide instructions, code scaffolding, JavaDoc documen-
tation, and relevant examples to supplement the assignment.
The following student-focused content is provided in the
Student directory:

• instructions - a directory containing the instruc-
tions for each sprint, including a combined version
in both PDF and Word document formats and an ex-
panded rubric for each of the sprints based on the
auto-graders available below;

• resources - a collection of resources that includes:
– style-guide.pdf - a coding style guide,
– CS2Style.xml - an Eclipse configuration file tomatch
the included style guide,

– Method Stubs.html - a short overview of writing
method stubs,

– UML in Text Files.html - a short overview of
writing UML as text files, and

– pineapple_pizza - an Eclipse project that includes
an example GUI application using Swing; and

• scaffolding - code scaffolding for sprint6 along
with example main method testing for sprint4.

Additionally, example solutions and auto-grading tools are
available for instructors on request. That material includes:

3



• Syllabus.pdf - the course syllabus utilizing Meme
Magic;

• Course Schedule.pdf - the schedule of topics that
include Meme Magic;

• javadoc - a directory containing the HTML docu-
mentation for all classes and methods for sprint2,
sprint3, and sprint4;

• solutions - example solutions for each sprint; and
• autograders - auto-grader code for each of the sprints
as JUnit tests formatted for use with Gradescope2, but
which may be modified for other JUnit-based graders.

2https://gradescope.com

4

https://gradescope.com

	Synopsis
	1 Engagement Highlights
	2 Recommendations
	3 Learning Objectives
	4 Pitfalls
	5 Marking Guidelines
	6 Extensions
	7 Materials

