
Black Problem 2: Mastermind! [35 points;

individual or pair]

Copied from:

https://www.cs.hmc.edu/twiki/bin/view/CS5/Mast
erMindBlack on 3/22/2017

Please make sure that you have read the instructions on the Assignment 8

"Black" main page so that you understand the choices available to you this
week.

In this problem you will be implementing a "generalized" version of the

Mastermind game! First, we describe the basic functionality of this program
and then, at the bottom of this page, we describe some fun optional super
extra bonus parts that you might wish to do for bonus credit.

The program begins "automatically": We just include the lines

if __name__ == "__main__":

 main()

at the bottom of the file (anywhere after the definition of the main() function

itself—this is typically at the very bottom of the file), and this automatically
invokes the main()function when the program is invoked from the command

line. Those long lines before and after name and main are pairs of underscore

symbols: There are two consecutive underscores at the beginning and two
consecutive ones at the end.

To make it easy to test your different Mastermind implementations (see
below), your main() should do nothing except to ask the user which version

of the game to play, and then call either mastermind1() or mastermind2() based

on the answer.

When the game begins, the program asks the player to enter:

• The number of holes per row (this is 4 in the commercial version of the
game, but it can be anything in our generalized version!)

• The number of rows (this is the number of rounds in the game—it is
10 or 12 in the commercial versions of the game, but again it can be
anything here!)

• The number of colors (these will actually be consecutive integers
beginning at 0—in the commercial version there are 6 colors, but it
can be anything here)

https://www.cs.hmc.edu/twiki/bin/view/CS5/MasterMindBlack
https://www.cs.hmc.edu/twiki/bin/view/CS5/MasterMindBlack

Once the player has specified these values, the game commences. The
program chooses a random "code"—the secret selection of colors in the

holes. Remember that the colors are actually integers ranging from 0 to the
number of colors specified by the user, minus one.

At each round of the game, the player is asked to guess the code—that is, to

guess the color for each hole. The program then "scores" the player's guess.
For each guess that is the correct color in the correct hole, the player gets
one "black" point. Among the remaining guesses, each guess that is the

correct color but in the wrong hole gets one "white" point. The score is
simply the number of black points followed by the number of white points.

After each round of play, the game board is displayed. The displayed game

board shows the rows that have been guessed so far, along with their
scores. Here is some sample input and output. Please follow these
input/output conventions to make it easier for the grutors to evaluate your

program. You may make minor cosmetic changes to this, but your
input/output display should be essentially like this:

Welcome to Mastermind!

How many holes per row shall we have? 3

How many rounds shall we have? 42

How many colors shall we have? 4

Enter your guess for round 0...

 Enter guess for hole 0: 0

 Enter guess for hole 1: 1

 Enter guess for hole 2: 2

===START BOARD===

Round 0 [0, 1, 2] Score: 1 black and 1 white

====END BOARD====

Enter your guess for round 1...

 Enter guess for hole 0: 0

 Enter guess for hole 1: 0

 Enter guess for hole 2: 2

===START BOARD===

Round 0 [0, 1, 2] Score: 1 black and 1 white

Round 1 [0, 0, 2] Score: 1 black and 2 white

====END BOARD====

Enter your guess for round 2...

 Enter guess for hole 0: 0

 Enter guess for hole 1: 2

 Enter guess for hole 2: 0

You got it in 3 rounds!

Would you like to play again? n

Bye!

The game ends if the player guesses the score correctly (a win!) or the
player has not succeeded at the end of the specified number of rounds. In

either case, the player is asked if she/he would like to play again. If so, the
process starts from the beginning, with the player being asked for the
number of holes, rounds, and colors.

Your program will be evaluated both for correctness and also for quality of
design and style. Approximately half of your score on this problem will be
based on following the good design principles discussed in lecture and

summarized below. Here are a few guidelines to follow for design and style.
We'll consider these guidelines in grading your code:

• First, think about the design of your program and lay out the functions

that you'll need on paper before you do any actual programming. In
particular, try to identify the separate logical parts of your program.
For example, you might have a part of your program that prints the

contents of the board, another part that evaluates a guess, and so
forth. For each part, ask yourself what arguments it will require and
what results it will produce. These parts can then be translated into

Python functions.
• Make sure that each of your Python functions really encapsulates one

particular well-defined task. Then, write the functions one by one. For

each function, include a docstring that explains the arguments that the
function takes, what the function is "responsible for doing", and what
result it produces. If your function is more than 10 or 12 lines of code,

ask yourself if it makes sense to break it up into separate
subfunctions. The answer may be "no"—but think about it.

• Think about your code carefully before you write it. There is usually

more than one way to get a computational task done. Software takes a
"short" time to write relative to the amount of time that it is used. It's
worth programming slowly and making sure that the code that you

write is clear, simple, and easy for you (or someone else) to go back
and read or modify. If your code seems complicated, it probably can
be rewritten in a simpler and more elegant way.

• Use comments when there is something in your code that is not self-
evident. You don't need to have a comment for every line, but lines or
blocks of code that do something that is not immediately obvious to

the casual observer merit at least some documentation. You will find
that it takes some experience to decide what is "not immediately
obvious"; if in doubt, ask a professor or grutor.

• Test each function as you write it. Make sure that the function that you
just wrote behaves correctly before moving on to the next
function. This will potentially save you enormous amounts of time and

anguish when debugging.

• Avoid global variables! debug is a notable exception, and on very rare

occasions it makes sense to introduce others. In general though, it's

cleaner and safer for functions to pass one another just what they
need to do their jobs.

• Use descriptive function and variable names. A function name

like printBoard is more descriptive than pb. Similarly, a variable name

like colors or numcolors is more descriptive than c or x.

For the sake of debugging, you should have the following line at the top of
your code:

debug = True # debug is True if debugging info is to be

displayed, and False otherwise

Throughout your code, you should have conditional statements of the form:
if debug:

 print blah, blah, blah

that print out key information about the inner workings of your program.

In particular, if debug is True, your program should print out the computer's

chosen secret random code (the sequence of colors that you are trying to

guess). This will allow you to ensure that the behavior of your program is
correct. Later, of course, you can set debug to False to deactivate the printing

of this information.

For example, in the game shown above, here's what things might look like in
debug mode:

% python mastermind.py

Welcome to Mastermind!

How many holes per row shall we have? 3

How many rounds shall we have? 42

How many colors shall we have? 4

DEBUG MODE: THE CODE IS [0, 2, 0]

Enter your guess for round 0...

 Enter guess for hole 0: 0

 Enter guess for hole 1: 1

 Enter guess for hole 2: 2

DEBUG MODE: MATCH AT HOLE 0

===START BOARD===

Round 0 [0, 1, 2] Score: 1 black and 1 white

====END BOARD====

...

Part One: Insecure Program

The first version of your game should be called mastermind1(). Internally, it

should use eval(input()) not int(input()) to read the user's guesses. As we

saw in class, this allows the user to enter Python expressions and cheat at
the game. Do not validate the input; if there are four colors and the user
guesses 10, that's fine (it will simply show up as an incorrect guess).

To make cheating possible, you'll find that it's necessary for the function that
reads guesses to know the secret code, even though that's not actually
necessary for proper operation of the function. For the purposes of this part;

we'll accept that minor glitch.

Your program should play the Mastermind game correctly when the user
types legitimate guesses. However, it should also be possible for a

knowledgeable user to win the game in one round by cheating. In a
comment at the top of mastermind1(), clearly explain how to win by

cheating.

Part Two: Secure Program

The second version of your game should be called mastermind2(). For the

most part, it should be the same as mastermind1() except that it will need to

call a few revised functions. In this version, you must fully validate

everything the user types. That means that you should ensure that every
input is in fact an integer, you should check those integers to make sure
they are sensible (e.g., the number of colors shouldn't be -1 or absurdly

large), and illegal guesses should be detected. You will find
the try...exceptconstruct discussed in class to be useful in validating input.

If the user enters bad values, you should print a complaint and ask for the

value again.

Hints

In addition to the observations about this problem that we made in class,

here are a few things that will be of use to you:

• To generate a random number, include the line

from random import *

at the top of your file. Then, the function randint(x, y) can be used to

generate a random integer in the range from x to y inclusive.

• All Python types can be cast as strings. This is useful when printing!
For example, if mylist = [1,2,3] then we can print it as part of a string

as follows:

print("My list is: " + str(mylist))

The same can be done with integers, floating-point numbers, etc.

• Recall that to construct a list incrementally, we can use
the append method. For example:

• In [1]: mylist = []

•

• In [2]: mylist.append(1)

•

• In [3]: mylist.append(2)

•

• In [4]: mylist

• Out[4]: [1, 2]

• Remember that a function can return several items by placing those
items in a list and returning the list!

Optional Bonus Features

Totally Optional Super Fun Bonus Parts! If you want more
entertainment, here are several fun optional bonus parts for you to consider:

• [Up to 8 bonus points] Use turtle or another drawing tool to

visualize the board. That is, the user should see a graphical display of
the board, the guesses, and the scoring rather than a textual
representation.

• [Up to 15 bonus points] Allow the player to specify two options:
Option 1 is that the computer chooses the code and the player tries to
guess it (what you just did above) and option 2 is that the human

player chooses the code (and keeps it secret from the computer) and
the computer tries to guess the code! For full bonus credit on this,

your computer player must be "good". See the Mathworld web
page for some references on good strategies. This problem has been
studied by mathematicians and computer scientists and there is a rich

body of published research on it!

If you add these bonus features, please include a comment at the top of
your file clearly documenting what you did and how to use your program.

http://mathworld.wolfram.com/Mastermind.html
http://mathworld.wolfram.com/Mastermind.html

Submit

Be sure to submit your code with debug set to True so that we can see the

debugging information (and particularly the secret code) when testing your
program!

	Black Problem 2: Mastermind! [35 points; individual or pair]
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/MasterMindBlack on 3/22/2017
	Part One: Insecure Program
	Part Two: Secure Program
	Hints
	Optional Bonus Features

	Submit

