CptS 111 Introduction to Algorithmic Problem Solving
(http://piazza.com/wsu/fall2016/cpts111/home)

Washington State University (https://wsu.edu)

Gina Sprint (http://eecs.wsu.edu/~gsprint/)

Lab12 Lists (10 pts)

Learner Objectives

At the conclusion of this lab, participants should be able to:

» Declare lists uni-dimensional and multi-dimensional lists
Index into lists

Apply common list operations

Implement basic list functionality

Program hardware via a Python interface

Prerequisites

Before starting this lab, participants should be able to:

» Apply loops
» Perform File I/O
» Work with strings

Lab Format

Task 0 and Pair Task

Task O will be completed as a group with step-by-step guidance from your TA. After Task 0, your TA will group
you into pairs and assign you a task (one of Tasks 1-10).

Additional Tasks

Once you complete Task 0 and your assigned task with a partner (pair task), you are to continue solving
additional lab tasks until the end of lab. You are encouraged to complete all of the lab tasks. Practice, practice,
practice!

Completing a Task

When you complete a task, show your TA your code and output. Also, help others with this task either in
person or by answering questions in your Piazza (http://piazza.com/wsu/fall2016/cpts111/home) lab section
group. Helping your peers benefits both you and your classmates, "While we teach, we learn." Seneca
(Roman philosopher, mid-1st century AD).



http://piazza.com/wsu/fall2016/cpts111/home
https://wsu.edu/
http://eecs.wsu.edu/~gsprint/
http://piazza.com/wsu/fall2016/cpts111/home

Lab Dismissal

You are dismissed from lab when your TA dismisses you, or after 3 hours, whichever comes first. Your TA will
dismiss you once you have demonstrated mastery of the material (completed a certain number of tasks).
Should you demonstrate mastery before the end of lab, you are encouraged to stay and perform a
combination of the following:

» Help your peers
« Work on additional tasks
» Work on the current programming assignment

Take advantage of your TA and your peers as resources and make the most of lab time!

Acknowledgments

Content used in this assignment is based upon information in the following sources:

e Adafruit LED Art with Fadecandy (https://learn.adafruit.com/led-art-with-fadecandy)
» scanlime's Github Fadecandy repository (https://github.com/scanlime/fadecandy)



https://learn.adafruit.com/led-art-with-fadecandy
https://github.com/scanlime/fadecandy

Task 0

For this lab, we are going to solve of mix of standard tasks, as well as tasks that utilize hardware. The
hardware we are going to play with is a combination of an Adafruit (https://www.adafruit.com/) Fadecandy
(https://learn.adafruit.com/assets/12274) microcontroller and a 8x8 LED NeoPixel matrix
(https://www.adafruit.com/products/1487). The Fadecandy/LED matrix hardware/software is a DIY (do it
yourself) project that is available through Adafruit at this site (https://learn.adafruit.com/led-art-with-

fadecandy).

Notes

1. If for some reason you are unable to get the necessary software installed and working properly, there
are tasks in this lab that you can solve without the hardware. Tasks that require the hardware are
labeled.

2. Please be gentle with the hardware, especially the wires and the connection points

3. Please do not turn the lights on full brightness. It is incredibly bright! To programmatically dim the
lights, use less intense RGB values for your colors. For example, let brightness = 5e:

A.white = (brightness, brightness, brightness) instead of white = (255, 255, 255)
B.red = (brightness, 0, 0) instead of red = (255, 0, @)

C. green = (0, brightness, 0) instead of green = (0, 255, 0)

D. blue = (0, 9, brightness) instead of blue = (0, 0, 255)

Note: You can explore RGB color values at this website (http://www.colorpicker.com/).

The following steps for Task 0 are going to walk you through downloading and installing the necessary
software to program the Fadecandy micro-controller with Python :) | would like to give credit to this Adafruit
project page (https://learn.adafruit.com/led-art-with-fadecandy) for information about the hardware/software
setup.

Setup Fadecandy Hardware

We are going to utilize the following hardware:

1. Fadecandy micro-controller

2. 8x8 LED NeoPixel matrix

EEEEEEE
Cgo »
BE'nnEne
BEEEE

EEEEEEEE
o
ol
pEEEgnEs
Eggaeeen

3. Mini USB cable
4.5V power supply


https://www.adafruit.com/
https://learn.adafruit.com/assets/12274
https://www.adafruit.com/products/1487
https://learn.adafruit.com/led-art-with-fadecandy
http://www.colorpicker.com/
https://learn.adafruit.com/led-art-with-fadecandy

To setup the hardware, perform the following steps:
1. Gently plug the USB cable into the Fadecandy board and into your computer
2. Gently plug the 5V power supply into an outlet

Setup Fadecandy Software

1. Open this link: https://github.com/scanlime/fadecandy (https://github.com/scanlime/fadecandy) and
click the green "Clone or download" button. From the drop down menu, click "Download ZIP".
Download this zip file (fadecandy-master.zip) to your computer.

O This repository Pull requests Issues  Gist A +- - -
scanlime / fadecandy @ Watch~ 94 ¥rStar 604  YFork 192
<3 Code ssues 31 Pull requests 6 Projects 0 Wiki Pulse Graphs

Easy to use open source hardware to drive WS2811 LEDs with high-quality color

722 commits 2 branches 13 releases 22 contributors MIT
Branch: master v New pull request Create new file =~ Upload files = Find file
Q_ scanlime committed on GitHub Merge pull request #72 from luxcapto/master ... Clone with HTTPS & Use S5H

Use Git or checkout with SWN using the web URL.

bin 4
https://github.com/scanlime/fadecandy.git | B
bootloader
doc fads = Open in Desktop Download ZIP
examples Made examples compliant with C++11. Compiles with gcc 6 5 months ago
2. Extract the downloaded zip file fadecandy-master.zip
3. Open the extracted folder fadecandy-master
4. Open the fadecandy-master\bin directory
| & [ = | bin - o x
Home Share View (7]
« « 4 || > ThisPC » Downloads » fadecandy-master > fadecandy-master > bin v O | Searchbin r
# Quick access [ Name - Date modified Type Size
[ Desktop [5] dfu-util.exe Application 420 K8
3 Downloads [7] fe-boot-v101 hex HEX File 11KB
9 Documents [ fe-firmware-v105.dfu DFUFile 9Ke
Gonele D [7] fe-firmware-v105.elf ELF File 130 K8
& Google Drive [ fe-firmware-v105.hex HEX File 35KB
+#| Cook Research 7] fe-firmware-v106.dfu DFU File 15KB
| workspace ] fe-firmware-106.cif ELF File 133K8
/] website 7] fe-firmuware-106.hex HEX File S2KB
£ Dropbor U] fefirmmare-v107.au DrUFie 1518
7] fe-firmware-v107.elf ELF File 130 KB
& OneDrive [7] fe-firmuware-v107.hex HEX File 50 KB
g [#) feserver.exe Application 304
[7] feserver-galileo File 181 K8
=¥ Network [ feserver-osx File 249KB
[7] feserver-rpi File 169 KB
[ README.md MD File 4B
15items =

5. Run the fcserver program. This program runs in the background and connects your Python code with
the Fadecandy board. It also has a simple web interface you can use to test your LEDs.
A. On Mac OS, double-click the fcserver-osx file in bin
B. On Windows, double-click fcserver.exe in bin
6. Check that fcserver is running. The fcserver program will run in a terminal window (console). If all is
well, you should get a message like "Server listening on 127.0.0.1:7890". This tells you it's ready to
accept connections from other programs on your computer.


https://github.com/scanlime/fadecandy

B C:\Users\gsprint\Downloads\fadecandy-package-02\fadecandy-package-02\bin\fcserver.exe - u] %

[14790893287:6093] NOTICE: Server listening on 127.8.8.1:7890
USB device Fadecandy (Serial# GIMWUOSYLFKXKDCH, Version 1.87) attached.

What is fcserver listening for? Three things, actually:
A. Programs using the Open Pixel Control (opc) protocol to talk to your LEDs
a. This is how we are going to program the Fadecandy/matrix using Python
B. Browser-based programs using WebSockets to talk to your LEDs
C. Web browsers requesting an HTML-based user interface
7. Let's try out the browser interface. Now that fcserver is running, you can navigate your web browser
to http://localhost:7890 (http://localhost:7890). You should see a page like this one:

m Discussion Code

Fadecandy LED Controller

Serial number GIMWUOSYLFKXKDCN , firmware version 1.e7

¢ Dr\r\edf&!

Identify = Test Patterns =

Server Info

Connected to ws://localhost:7890
Server software version fcserver-1.82

Server configuration JSON:

{
"listen": [ "127.0.0.1", 7890 ],
"verbose": true,
"color"s { "gamma": 2.5, "whitepoint™: [ 1, 1, 1 ] },
"devices": [
{
"type": "fadecandy",
"map": [ [ @, @, 8, 512 ] ]
}
]
}

A. If you plug in a Fadecandy Controller board, it should show up in the Connected Devices
section. No need to reload the web page.

B. From the "Test Patterns" drop down button, select 50% brightness to make sure you are all
set up to connect to your Fadecandy and matrix! If this doesn't work, ask your TA for help.


http://localhost:7890/

Run a Fadecandy Python Example

We are (finally) going to program the Fadecandy/matrix from Python! To do this, follow these steps:

1. Navigate up one directory from the fadecandy-master\bin folder to the fadecandy-master folder.
Open the fadecandy-master\examples\python folder. Here you will see several .py file examples

2. Open the README.md file using a text editor. README.md contains a description of each .py file in
the folder. Read about chase.py. When executed, what is chase.py supposed to do?

3. Open chase.py in Spyder

4. Run chase.py and watch your matrix! Does the execution of chase.py do what you expected it
to do?

Now, let's walk through chase.py line by line (I've added line numbers):

Line 1:#!/usr/bin/env python
Line 3:# Light each LED in sequence, and repeat.
Line 5:import opc, time

Line 7:numLEDs = 512
Line 8:client = opc.Client('localhost:7890")

Line 10:while True:

Line 11: for i in range(numLEDs):

Line 12: pixels = [ (0,0,0) ] * numLEDs
Line 13: pixels[i] = (255, 255, 255)
Line 14: client.put_pixels(pixels)

Line 15: time.sleep(0.01)

Line 5: opc (you can read about what opc does in README.md) and time are imported. The opc module is
imported in order to create a Client object used to interface with the hardware via the fcserver (see line 8).
The time module is imported to add a time delay, essentially forcing the program to "wait" (see line 15).

Line 7: a variable numLEDS is initialized to 512. Some Fadecandy projects connect to 8x64 LED NeoPixel
matrices. Since we are connected to a 8x8 matrix, what should we change numLEDS to? Make this change and
re-run chase.py. How did this change affect the animation?

Line 8: an opc.Client object is initialized. If you are curious about the string argument, 'localhost:7890",
read about it in the docstring of __init__ () in opc.py.

Line 10: we have an infinite loop. Essentially, run until this program is killed.

Line 11: we have a loop iterating numLEDS number of times. For each iteration, i, of the loop (lines 11-15), the
code does the following:

1. Line 12: Create a list of numLEDS RGB (R, G, B) tuples. A tuple is an immutable list. Each tuple is
initialized to (0, 0, 0) which is black (no light). A list of pixel colors is created for each light.
2. Line 13: Modify the RGB tuple to (255, 255, 255), which is white. Try changing the tuple to (151, 30,
49) How did this change affect the animation?
A. Do you know what color (151, 30, 49) is? Hint: GO COUGS!



3. Line 14: Send the pixel colors to the hardware. put_pixels() is a method of the Client object.

Recall, what is a method?

4. Line 15: Suspend the program a certain number of seconds. time.sleep(<number of seconds>)
accepts an argument, the number of seconds to "wait". You can read more about time.sleep() in
the Python docs (https://docs.python.org/3/library/time.html#time.sleep). Change the 0.01 to 1 and
re-run chase.py. How did this change affect the animation?

You are now ready to try Fadecandy/matrix programming on your own!

Note: Make sure that opc.py is in the same folder as your .py file that contains code (such as chase.py) to
program the Fadecandy/matrix. Enjoy!

Task 1

Write a Fadecandy/matrix program that turns each light on one by one starting with the upper left corner and
working toward the bottom right corner until all the lights are on. Once all lights are on, turn them off one at
time starting with the bottom right corner. Hence, the first light to turn on should be the last light to turn off and
the last light to turn on should be the first light to turn off.



https://docs.python.org/3/library/time.html#time.sleep

Task 2

Write a Fadecandy/matrix program that shows a graphic of your choosing (e.g., a flag, an emoji, a fun pattern,
etc.) for 2 seconds, then turns the lights off for 5 seconds. Repeat the graphic on/off sequence 5 times.

Note: make sure your graphic is school appropriate.

Here is an example using an American Flag:

®O® 6 006 0 3

9090000006

® 00 B DO
® DD B®O®OB®

®
®
®
®
®
L]
&
]




Task 3

Since the NeoPixel matrix is an 8x8 matrix, logically it makes sense to think of the matrix as a two dimensional

list of pixels, i.e. a list of 8 items where each item is a list of 8 pixels. So far, we have been programming the

Fadecandy/matrix such that it is a one dimensional list of pixels, i.e. a list of 64 items where each item is a
pixel.

Part 1

So we can use 2D lists with the Fadecandy/matrix in the future, write a program that converts 2D lists of 8x8
items to 1D lists of 64 items and vice versa.

As part of your solution, define the following functions:

1. convert_twoD_to_oneD(twoD): accepts a single parameter, twoD, that is a 2-dimensional list (8x8)

of items. convert_twoD to oneD() returns a 1-dimensional list of the items in twoD, flattened out. As
a small 2x2 example, convert_twoD_to_oneD([[1, 2],

[3, 4]]) would return [1, 2, 3, 4]
2. convert_oneD_to_twoD(oneD): accepts a single parameter, oneD, that is a 1-dimensional list of 64

items. convert_oneD_to_twoD() returns a 2-dimensional list (8x8) of the items in oneD, structured in
a grid. As a small 2x2 example, convert_oneD_to_twoD([1, 2, 3, 4]) would return [[1, 2],

[3, 4]1].

Note: The items may be anything (pixel tuples, strings, integers, etc.), the type of the items does not matter
Now, write code that populates a 2-dimensional list with random RGB values in the range [0, 255] inclusive.
Call your convert_twoD_to_oneD(twoD) to convert the 2D list to a 1D list and send the pixels to the board.
Generate new random pixel colors every 0.25 seconds.

Here is an example matrix of random colors:

eeeo 0000
e0o000 009
e o800 o0
....0...
eeeee o0
......:"-i‘..
0......'

Part 2



Modify your solution so that your functions convert 1D and 2D lists of any size, instead of 8x8 and 64. You will
not need to add any additional parameters to convert_twoD_to_oneD(twoD) to do this, but you will need to
add parameters to convert_oneD_to_twoD(oneD) in order to know how many rows to extract from oneD and
how many items should be in each row. | recommend one of the following approaches:

1. (easy) Uniform row length: convert_oneD_to_twoD(oneD, num_rows) where num_rows is an integer
number of rows to extract. Note: you can assume each row has the same number of items in it (i.e. a
rectangular matrix).

2. (challenge) Non-uniform row length: convert_oneD_to_twoD(oneD, num_rows,
num_items_per_row) where num_rows is an integer of rows to extract and num_items_per_rowis a
1D list of num_rows integers, where an integer in num_items_per_row at position i denotes the
number of items for the ith row. Note: you are assuming each row does not necessarily have the
same number of items in it (i.e. a jagged matrix).



Task 4

Part 1

Write a Fadecandy/matrix program that continually shows the letters of your name, one letter at a time.

Note: You can design letters of your name using my frame designer
(http://eecs.wsu.edu/~gsprint/cougarquest/lightarray/). For this tool, B is used to denote black, and C is used to

denote color. You will want to declare variables B = (0, @, @) and C = # your choice of color in your

code.

Here is an example showing "PYTHON":

(S 8 8 g B

[ 8 S 8 B 8

Part 2

Modify how the letters of your name are displayed such that the letters scroll across the matrix from right to
left, instead of being displayed one at a time.

Here is an example showing "PYTHON":

© 00000 0
P 660060 0 ¢
1i® ®© 0 090



http://eecs.wsu.edu/~gsprint/cougarquest/lightarray/

