
	 	 	 	 	 	 		TEACHING	PAPER	
	

	

	

Computing	and	the	Digital	Humanities	
MARK	D.	LEBLANC,	Wheaton	College	
	
	
This	paper	 introduces	three	assignments—each	with	their	own	“starter	kits”	 for	students—for	those	with	a	 love	of	the	
written	(and	digital)	word.	These	assignments	are	part	of	a	‘Computing	for	Poets’	course	that	exposes	students	to	leading	
markup	 languages	 (HTML,	 CSS,	 XML)	 and	 teaches	 computer	 programming	 as	 a	 vehicle	 to	 explore	 and	 “data	 mine”	
digitized	texts.	Recent	advances	in	computer	software,	hypertext,	and	database	methodologies	have	made	it	possible	to	
ask	novel	questions	about	a	poem,	a	story,	a	trilogy,	or	an	entire	corpus.	Programming	facilitates	top-down	thinking	and	
practice	 with	 computational	 thinking	 skills	 such	 as	 problem	 decomposition,	 algorithmic	 thinking,	 and	 experimental	
design,	topics	that	humanities	students	in	our	experience	rarely	see.	Programming	on	and	with	digitized	texts	introduces	
students	 to	 rich	new	areas	of	 scholarship	 including	stylometry	 (i.e.,	 the	statistical	analysis	of	variations	 in	 literary	style	
between	one	writer	or	genre	and	another),	applied	to,	for	example,	authorship	attribution.		
	
	

 COMPUTING	FOR	POETS	

At	Wheaton	College	(Massachusetts),	we	offer	a	semester-long	CS-1-like	elective	course	named	
‘Computing	 for	 Poets’	 to	 introduce	 students	 to	 programming	 within	 one	 area	 of	 the	 digital	
humanities:	 the	 application	 of	 computing	 to	 the	 study	 of	 digitized	 texts.	 Course	 material	
development	was	 done	with	 humanities	 scholars.	 The	 ‘Computing	 for	 Poets’	 course	 discussed	
here	 is	 connected	with	 two	 courses	 by	Michael	 Drout	 in	 the	 English	 department	 at	Wheaton:	
‘J.R.R.	Tolkien’	(ENG	259)	and	‘Anglo-Saxon	Literature’	(ENG	208).		
	
The	 course	 exposes	 students	 to	 leading	 markup	 languages	 (HTML,	 CSS,	 XML)	 and	 teaches	
computer	 programming	 (Python)	 as	 a	 vehicle	 to	 explore	 and	 “data	 mine”	 digitized	 texts.	 A	
learning	 objective	 for	 students	 in	 this	 course	 is	 to	 articulate	 how	 computational	 analyses	 of	
digitized	 texts	 enables	both	a	“close	 reading”	 of	 a	 single	 text	 as	well	 as	 a	“distant	 reading”	 of	
many	texts	across	time.	The	goal	for	each	student	is	to	master	enough	programming	to	process	
digitized	 texts	 in	 order	 to	 conduct	 a	 computational	 experiment	 that	 explores	 a	 question	 of	 a	
single	novel,	set	of	texts,	or	entire	corpora.	
	
The	 time	 has	 never	 been	 better	 for	 computing	 to	 impact	 the	 humanities.	 Digital	 humanities	
represent	 a	 growing	 specialization	on	many	 campuses,	 and	 the	 glut	of	 digitized	 texts,	many	 in	
languages	from	around	the	globe	that	match	a	scholar’s	areas	of	expertise,	has	radically	altered	
what	 it	 means	 to	 be	 a	 scholar	 of	 texts	 [Gold	 2012].	 Computational	 explorations	 of	 texts,	
sometimes	 referred	 to	 as	 “computational	 stylistics”	 is	 a	 subfield	within	 the	 Digital	 Humanities	
and	 one	 where	 students	 need	 exposure	 to	 and	 practice	 with	 searching	 and	 analyzing	 large	
digitized	corpora.	
	
The	Poets	course	is	offered	in	the	spirit	of	EngageCSEdu’s	effort	for	creative	offerings	that	might	
increase	the	number	of	women	who	consider	computing.	In	the	six	offerings	of	Poets	since	2004,	
women	enroll	 in	 higher	 percentages	 than	20	of	 the	 22	offerings	of	 our	 traditional	 CS1	 course.	
Since	2000,	women	enroll	in	other	sections	of	CS1	at	an	average	of	36%.	In	contrast,	from	2004	
to	the	present,	on	average	58%	of	the	students	in	Poets	were	women	[LeBlanc	2015].	In	the	most	
recent	semester	(Spring	2016),	63%	of	the	27	students	are	women.	
	



•					M.D.	LeBlanc	
	
 

	
EngageCSEdu	Teaching	&	Implementation	Papers,	Publication	date:	May	2016	

2	

 SOME	GENERAL	ADVICE	FOR	IMPLEMENTING	THE	POETS-FOCUSED	ASSIGNMENTS	

(1) Regularly	 allocate	 time	 in	 your	 class	 sessions	 to	 bring	 in	 colleagues.	 To	 find	 good	
matches,	walk	across	 campus	and	buy	a	 faculty	member	a	 cup	of	 coffee	and	 listen	as	
they	 discuss	 their	 area	 of	 expertise.	 You	 will	 be	 surprised	 at	 how	 quickly	 their	 area	
intersects	 with	 computing.	 In	 my	 case,	 for	 example,	 English	 professor	Michael	 Drout	
showed	 up	 at	 my	 office	 wanting	 to	 ask	 a	 question	 across	 the	 entire,	 now	 digitized,	
Anglo-Saxon	corpus.	This	conversation	results	in	our	on-going	collaboration.	

(2) Give	students	a	sense	of	the	real	demand	for	people	who	can	work	in	multidisciplinary	
groups	on	computationally-intensive	problems.	Don't	be	shy	when	sharing	that	the	skills	
learned	in	this	type	of	course	can	“get	students	a	job”	at	the	start	of	an	exciting	career	
[Sinha	and	Rauscher	2014;	Rumsey	2012].	

(3) Use	a	“flipped	classroom”	where	students	watch	lectures	before/after	class	in	order	to	
maximize	 the	 amount	 of	 hands-on	 play.	 For	 example,	 leverage	 programming	 practice	
sites	for	students	by	requiring	practice	outside	of	class	(cf.	Codecademy's	Python	course	
and/or	 Runestone	 Interactive’s,	 How	 to	 Think	 Like	 a	 Computer	 Scientist	 [Miller	 and	
Ranum	 2014]).	 As	 much	 as	 you	 are	 able,	 leverage	 the	 growing	 number	 of	 online	
resources	as	a	means	to	protect	your	vital	classroom	time	for	hands-on	work.	

	

 HOW	TO	IMPLEMENT	THREE	CORE	ASSIGNMENTS	IN	THE	POET	SEQUENCE	

The	EngageCSEdu	collection	contains	five	of	the	assignments	in	the	Poet	sequence.	For	purposes	
of	this	paper,	I	focus	on	implementation	of	three	of	the	core	assignments:	

(1) Reading	Poetry	Backwards	https://www.engage-csedu.org/find-resources/2poets-
reading-poetry-backwards-–-rpb-v10	

(2) Regular	Expressions	for	a	Puzzle	Master	https://www.engage-csedu.org/find-
resources/3poets-regex-play	

(3) Asking	a	Question	Over	an	Entire	(Anglo-Saxon)	Corpus	https://www.engage-
csedu.org/find-resources/5poets-only-poetry-searching-anglo-saxon-corpus	

 Reading	Poetry	Backwards	–	RPB	v1.0	
This	 initial	 programming	 assignment	 requires	 students	 to	 study,	 understand,	 and	 augment	 a	
Python	 program	 that	 (re)writes	 or	 “breaks”	 poems	 in	 various	 “deformed”	 manners,	 including	
printing	the	lines	of	a	poem	in	reverse	(last	line	to	first	line),	randomized	orders,	and	printing	the	
individual	words	of	a	poem	in	complete	reverse	order.	“Breaking	poems”	is	one	method	to	help	
the	 reader	 more	 easily	 read	 poems.	 In	 an	 undated	 fragment	 on	 a	 leaf	 of	 stationery,	 Emily	
Dickinson	wrote:		
	

Did	 you	 ever	 read	 one	 of	 her	 Poems	 backward,	 because	 the	 plunge	 from	 the	 front	
overturned	you?	I	sometimes	(often	have,	many	times)	have	--	a	Something	overtakes	
the	Mind.	

	
The	learning	goals	include	problem	decomposition	(functions),	extending	existing	code,	problem	
solving	with	multiple	solutions,	and	building	a	program	to	handle	a	wide	range	of	input	texts.	
	



Computing	and	the	Digital	Humanities					•	

	

EngageCSEdu	Teaching	&	Implementation	Papers,	Publication	date:	May	6,	2016	
	

3	

3.1.1	Capturing	Student	Interest	
This	 programming	 assignment	 leverages	 students	 love	 of	 literature	 and	 leads	 them	 to	 a	 space	
where	literature	and	computation	are	merging	in	collaborative	and	interdisciplinary	groups.	The	
assignment	 shows	 by	 example	 some	 of	 the	 faculty-student	 interactions	 that	 occur	 in	 our	
interdisciplinary	 research	 group	 of	 literary	 scholars	 and	 programmers.	 Student	 choice	 is	
immediately	encouraged	as	students	use	their	program	to	break	the	poems	written	by	their	own	
favorite	writers.	
	
I	 have	 no	 level	 of	 expertise	 with	 or	 even	 comfort	 with	 reading	 poetry,	 therefore,	 I	 invite	 an	
experienced	colleague—for	example,	Reference	Librarian	Amy	Barlow,	a	lover	of	poetry—to	my	
class	 to	 talk	about	deforming	poems	 [Leithauser	2013].	 Students	appreciate	 the	 fact	 that	 their	
program	might	help	others	read	poetry	in	new	ways.		
	
3.1.2	Starter	Code	Builds	Confidence	and	Persistence	
Prior	 to	this	assignment,	students	have	practiced	with	Python	for	at	 least	 two	weeks,	 including	
finishing	 a	 number	 of	 the	 beginning	 lessons	 in	 Codecademy's	 Python	 course	 and	 finishing	 in-
class,	hands-on	labs.	
	
In	all	of	the	programming	assignments,	students	are	given	a	"starter	kit”	that	includes	a	detailed	
specification	and	parts	of	a	programming	solution.	My	experience	shows	that	asking	students	to	
augment	an	existing	code-set	mirrors	 their	 future	 interactions	with	scripting	 (e.g.,	modify	code	
from	 a	 GitHub	 repository)	 and	 avoids	 an	 early	 discouragement	 of	 not	 knowing	 how/where	 to	
start	and/or	feelings	of	being	overwhelmed.	Of	course,	instructors	may	augment	the	amount	of	
code	provided	in	this	or	any	of	the	starter	kits.	
	
3.1.3	Student	challenges	
In	general,	students	do	not	have	a	good	handle	on	directory	(folder)	and	file	structure,	therefore,	
teaching	 file	 input	 and	 output	 requires	 some	 extra	 sensitivity	 on	 a	 topic	 that	 the	 instructor	
considers	as	second	nature.	In	addition,	Python's	write	statement,	along	with	formatting	output,	
like	many	languages,	is	terse,	at	best.	I	recommend	that	the	instructor	provide	sufficient	time	in	
class	for	practice	on	file	IO.	

 	Regular	Expressions	for	a	Puzzle	Master	

This	is	the	third	of	five	assignments	in	the	Computing	for	Poets	course.	This	assignment	requires	
students	to	write	regular	expressions	(regex)	to	match	patterns	in	words	that	solve	word	puzzles.	
A	number	of	the	puzzles	are	taken	from	Will	Shortz'	books	[1996,	2003].	Shortz	is	National	Public	
Radio’s	 (NPR)	 puzzle	 master.	 This	 assignment	 is	 a	 stand-alone	 exercise	 for	 practice	 with	 the	
powerful	 pattern-matching	 syntax	 of	 regular	 expressions.	 The	 assignment	 involves	 no	
programming.	
	
A	 web-based	 CGI	 (http://cs.wheatoncollege.edu/regexplay)	 compares	 student	 regex	 with	 a	
dictionary	 of	 words	 and	 returns	 a	 table	 of	 resulting	 word	 matches.	 Pairing	 students	 on	 this	
exercise	 generates	wonderful	 conversations	 as	 students	 collaborate	 to	 design	 and	 test	 regular	
expressions	that	will	help	solve	the	word	puzzles!	As	students	are	practicing	their	regex	with	this	
assignment,	in-class	time	is	spent	showing	students	how	to	apply	regex	in	their	Python	scripts.	
	



•					M.D.	LeBlanc	
	
 

	
EngageCSEdu	Teaching	&	Implementation	Papers,	Publication	date:	May	2016	

4	

 	Asking	a	Question	Over	an	Entire	(Anglo-Saxon)	Corpus	

This	fifth	of	five	assignments	requires	students	to	consider	a	collection	of	Old	English	poetry	and	
prose	texts,	including	tests	using	the	entire	corpus.	They	are	asked	to	explore	whether	any	words	
appear	only	in	the	poetry	collection?	If	so,	how	many	times	do	these	words	occur?	Students	use	
a	Python	dictionary	(also	called	a	“hash	table”	or	“map”)	to	keep	track	of	all	words	in	the	poetry	
and	 then	 remove	words	 from	 that	 dictionary	 that	 appear	 in	 the	 prose.	 Learning	 goals	 include	
problem	decomposition	(functions),	extending	existing	code,	technical	writing,	and	writing	scripts	
to	produce	HTML	output.	 The	 series	 of	 assignments	has	 come	 full	 circle:	 the	 student’s	 Python	
script	produces	HTML	pages	as	output.	
	

 CONCLUSION	

As	noted	in	new	frameworks	for	information	literacy	[2016],	computer	science	faculty	must	strive	
to	provide	students	with	opportunities	to	be	information	creators	and	not	only	consumers.	The	
intersection	 of	 digitized	 corpora	 and	 programming	 enable	 our	 students	 to	 be	 creators	 and	
makers,	and	to	ask	original	questions.	Students	benefit	when	they	recognize	that	their	solutions	
on	one	set	of	texts	can	be	applied	to	other	corpora	and	collections	of	texts.	For	example,	in	the	
last	assignment	that	isolates	words	found	only	in	the	poetry	of	an	entire	corpus,	a	student	might	
ponder:	“Are	there	any	words	used	by	the	Brontë	sisters	that	are	never	used	by	Jane	Austen?”	
What	do	you	think?	

ACKNOWLEDGMENTS	
The	breaking	poems	assignment	was	inspired	by	a	conversation	with	Amy	Barlow,	a	Reference	and	Instruction	Librarian,	
and	 a	 number	 of	 other	 library	 colleagues,	 specifically	Mason	Brown,	 helped	with	 the	 regular	 expression	 exercise.	 The	
regular	expression	work	stems	from	wonderful	English	and	DNA	facing	page	translations	when	applying	regex	to	English	
words	or	DNA	 (with	Betsey	Dyer,	Biology,	Wheaton	College;	 LeBlanc	and	Dyer,	2007).	English	professor	Michael	Drout	
(Wheaton)	 is	 actively	 involved	 in	 the	 design	 of	 assignments	 for	 the	 Poets	 course	 as	 we	 continue	 our	 research	
collaboration	together	(http://lexomics.wheatoncollege.edu).		
	

REFERENCES	
Codecademy’s	Python	Course.	Retrieved	April	1,	2016	from	https://www.codecademy.com/learn.	
Flipping	the	Classroom.	Center	for	Teaching	and	Learning,	University	of	Washington.	Retrieved	April	1,	2016	from	

http://www.washington.edu/teaching/teaching-resources/engaging-students-in-learning/flipping-the-classroom/.	
Framework	for	Information	Literacy	for	Higher	Education	(2016).	Association	of	College	and	Research	Libraries.	Retrieved	

April	1,	2016	from	http://www.ala.org/acrl/standards/ilframework.		
Gold,	M.K.	2012.	Debates	in	the	Digital	Humanities.	University	of	Minnesota	Press,	Minneapolis,	MN,	U.S.A.	
LeBlanc,	M.D.	and	Drout,	M.D.C.	2015.	“DNA	and	普通話	(Mandarin):	Bringing	introductory	programming	to	the	Life	

Sciences	and	Digital	Humanities.	Procedia	Computer	Science,	v51,	International	Conference	on	Computational	
Science,	Reykjavik,	Iceland,	p1937-1946.	

LeBlanc,	M.D.	and	Dyer,	B.D.	2007.	Perl	for	Exploring	DNA.	Oxford	University	Press.	
Leithauser,	B.	2013.	Reading	Poems	Backward.	The	New	Yorker.	July	11,	2013.	Retrieved	April	1,	2016	from	

http://www.newyorker.com/books/page-turner/reading-poems-backward.		
Miller,	B.	and	Ranum,	D.	2014.	How	to	Think	Like	a	Computer	Scientist.	Runestone	Interactive.	Retrieved	April	1,	2016	

from	http://interactivepython.org/runestone/static/thinkcspy/toc.html.	
Rumsey,	A.S.	2013.	Creating	Value	and	Impact	in	the	Digital	Age	Through	Translational	Humanities.	Council	on	Library	and	

Information	Resources:	Ruminations.	Retrieved	April	1,	2016	from	
http://www.clir.org/pubs/ruminations/03smithrumsey/translational_humanities.	

Shortz,	Will	1996.	The	Puzzle	Master	Presents:	200	Mind-Bending	Challenges.	Random	House.	
Shortz,	Will	2003.	The	Puzzlemaster	Presents:	Will	Shortz’s	Best	Puzzles	from	NPR.	Volume	2.	Random	House.	
Sinha,	N.	A.,	&	Rauscher,	B.	M.	2014.	Preparing	digital	natives	for	industry.	Proceedings	of	WorldComp	2014.	Retrieved	

April	1,	2016	from	http://worldcomp-proceedings.com/proc/p2014/FEC3353.pdf.	


