
Lab 4 From Decimal to Binary and beyond...

Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab4
on 3/20/2017

This lab is all about converting numbers to and from base 10

(where most humans operate) from and to base 2 (where virtually all
computers operate...).

At the end of the lab, you'll extend this to ternary, or base-3, where fewer

computers and humans, but many more aliens, operate!

Here's a header to start your hw4pr1.py file:

CS5 Gold/Black, hw4pr1

Filename: hw4pr1.py

Name:

Problem description: Binary <-> decimal conversions

Function #1 isOdd(N) warm-up function!

As background, we'll recall how to determine whether values are even or
odd in Python:

• First, open up Python and create a new blank file named hw4pr1.py -

feel free to start the file with the header above.

• Then, just to get started, write a Python
function called isOdd(n) that accepts a single argument, an integer n,

and returns True if n is odd and False if n is even. Be sure to return

these values, not strings! The evenness or oddness of a value is
considered its parity. You should use the % operator (the "mod"

operator). Remember that in Python n % d returns the remainder

when n is divided by d (assuming n >= 0). Here are two examples

of isOdd in action:

In [1]: isOdd(42)

Out[1]: False

In [2]: isOdd(43)

https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab4

Out[2]: True

Function #2 numToBinary(N)

This part of the lab motivates converting decimal numbers into binary
form one bit at a time, which may seem "odd" at first…!

Quick overview: you will end up writing a function numToBinary(N) that

works as follows:

In [1]: numToBinary(5)

Out[1]: '101'

In [2]: numToBinary(12)

Out[2]: '1100'

Starter code: If you'd like, we provide one starting point for
your numToBinary function here. A useful first task is to write a docstring!

def numToBinary(N):

 """

 """

 if N == 0:

 return ''

 elif N%2 == 1:

 return _____________________ + '1'

 else:

 return _____________________ + '0'

Thoughts:

• Notice that this function is, indeed, handling only one "bit" (zero or

one) at a time.
• We didn't use isOdd—this is OK. (This way is a bit more flexible for when we

switch to base 3!)
• Since we don't want leading zeros, if the input N is zero, it returns the

empty string.

• This means that numToBinary(0) will be the empty string. This is both
required and OK!

• If the input N is odd, the function adds 1

• If the input N is even (else), the function adds 0

• What recursive calls to numToBinary—and other computations—are

needed in the blank spaces above?

Hints!:

• You'll want to recurse by calling numToBinary on a smaller value.

• What value of N results when one bit (the rightmost bit) of N is

removed? That's what you'll want!
• Remember that the // operator is integer division (with rounding

down)

• Stuck? Check this week's class notes for additional details...
• tfw binary is fleek? Check out the gold notes' fleek version (which can

easily extend to any base...)

More examples!:

In [1]: numToBinary(0)

Out[1]: ''

In [2]: numToBinary(1)

Out[2]: '1'

In [3]: numToBinary(4)

Out[3]: '100'

In [4]: numToBinary(10)

Out[4]: '1010'

In [5]: numToBinary(42)

Out[5]: '101010'

In [6]: numToBinary(100)

Out[6]: '1100100'

Function #3 binaryToNum(S)

Next, you'll tackle the more challenging task of converting from base 2 to
base 10, again from right to left. We'll represent a base-2 number as a

string of 0's and 1's (bits).

Quick overview: you will end up writing a function binaryToNum(S) that

works as follows:

In [1]: binaryToNum('101')

Out[1]: 5

In [2]: binaryToNum('101010')

Out[2]: 42

Starter code: If you'd like, we provide one starting point for
your binaryToNum function here. A useful first task is to write a docstring!

def binaryToNum(S):

 """

 """

 if S == '':

 return 0

 # if the last digit is a '1'...

 elif S[-1] == '1':

 return _____________________ + 1

 else: # last digit must be '0'

 return _____________________ + 0

Thoughts:

• Remember that the input is a string named S.

• Notice that this function is, again, handling only one "bit" (zero or one)
at a time, right to left.

• Reversing the action of the prior function, if the argument is an empty
string, the function returns 0. This is both required and OK!

• If the last digit of S is '1', the function adds the value 1 to the result.

• If the last digit of S is '0', the function adds the value 0 to the result.

(Not strictly required, but OK.)
• What recursive calls to binaryToNum—and other computations—are

needed in the blank spaces above?

Hints!:

• You'll want to recurse by calling binaryToNum on a smaller string.

• How do you get the string of everything except the last digit?! (Use
slicing!)

• When you recurse, the recursive call will return the value of the
smaller string—This will be too small a value, but…

• What computation can and should you perform to make the value

correct?
• Remember that the recursion is returning the value of a binary

string one bit shorter (shifted to the right by one spot)—remember

how that right-shift changes the overall value. Then undo that
effect!

o You can either multiply or shift, but be sure to do so outside +

after the recursive call to binaryToNum
• That's all you'll need (it's just one operation after the recursive call)!

More examples!:

In [1]: binaryToNum("100")

Out[1]: 4

In [2]: binaryToNum("1011")

Out[1]: 11

In [3]: binaryToNum("00001011")

Out[1]: 11

In [4]: binaryToNum("")

Out[1]: 0

In [5]: binaryToNum("0")

Out[1]: 0

In [6]: binaryToNum("1100100")

Out[1]: 100

In [7]: binaryToNum("101010")

Out[1]: 42

Functions #4 and #5 increment(S) and count(S, n)

Binary Counting!

In this problem we'll write several functions to do count in binary—use the
two functions you wrote above for this!

Quick overview: you'll write increment(S), which accepts an 8-character

string S of 0's and 1's and returns the next largest number in base 2. Here

are some sample calls and their results:

In [1]: increment('00000000')

Out[1]: '00000001'

In [2]: increment('00000001')

Out[2]: '00000010'

In [3]: increment('00000111')

Out[3]: '00001000'

In [4]: increment('11111111')

Out[4]: '00000000'

Thoughts:

• Notice that increment('11111111') should wrap around to the all-zeros

string. This can be a special case (if).

• You don't need recursion here!
• Instead, use both of the conversion functions you wrote earlier in the

lab! Here is pseudocode:

o Let n = the numeric value of the input string S

o Let x = n + 1 (this is the increment!)

o Convert x back into a binary string with your other converter!

o Give a name, say y, to that newly created binary string...

o At this point, you're almost finished!

Hints!:

• The tricky part is ensuring you have enough leading zeros (in front
of y, if you used that name…)

• You could add 42 zeros in front of y with '0'*42 + y

• Now, consider the correct number of zeros to add…it will involve

the len function!

Next function: here, you'll use the above function to write count(S, n) that

accepts an 8-character binary input string and then begins counts n times

upward from S, printing as it goes. Here are some examples:

In [1]: count("00000000", 4)

00000000

00000001

00000010

00000011

00000100

In [2]: count("11111110", 5)

11111110

11111111

00000000

00000001

00000010

00000011

Thoughts:

• This means your function will print a total of n+1 binary strings.

• You should use the Python print command, since nothing is being

returned. We're only printing to the screen.
• You do need recursion here. What are the base case and the recursive

case? See below for hints:

Hints!:

• Use the increment function!

• Your base case involves n (what's the "simplest" value of n?)

• Your recursive case will involve n-1.

Base-3: ternary and balanced ternary

There are 10 types of people in the world: those who know ternary, those who don't, and

those who think this is a binary joke.

Functions #6 and
#7 numToTernary(N) and ternaryToNum(S)

"Ordinary" Ternary

For this part of the lab, we extend these representational ideas from base 2

(binary) to base 3 (ternary). Just as binary numbers use the two digits 0 and
1, ternary numbers use the digits 0, 1, and 2. Consecutive columns in the
ternary numbers represent consecutive powers of three. For example, the

ternary number

1120

when evaluated from right to left, evaluates as 1 twenty-

seven, 1 nine, 2 threes, and 0 ones. Or, to summarize, it is 1*27 + 1*9 + 2*3 +

0*1 == 42.

In a comment or triple-quoted string, explain what the ternary
representation is for the value 59, and why it is so.

Use the thought processes behind the conversion functions you have already
written to create the following two functions:

• numToTernary(N), which should return a ternary string representing the

value of the argument N (just as numToBinary does)

• ternaryToNum(S), which should return the value equivalent to the

argument string S, when S is interpreted in ternary.

Hints!:

• We're not providing starter code here, but…
• Base your solution from the corresponding

functions numToBinary and binaryToNum!

• In fact, copying-and-pasting those functions (and then changing as
needed) is a great strategy here.

Examples:

In [1]: numToTernary(42)

Out[1]: '1120'

In [2]: numToTernary(4242)

Out[2]: '12211010'

In [3]: ternaryToNum('1120')

Out[3]: 42

In [4]: ternaryToNum('12211010')

Out[4]: 4242

Finale! f'ns #8 and
#9 balancedTernaryToNum(S) and numToBalancedTernary(N)

Balanced Ternary

It turns out that the use of positive digits is common, but not at all
necessary. A variation on ternary numbers, called balanced ternary uses
three digits:

• + (the plus sign) represents +1

• 0 represents zero, as usual

• - (the minus sign) represents -1

This leads to an unambiguous representation using the same power-of-three

columns as ordinary ternary numbers. For example,
+0-+

can be evaluated, from right to left, as +1 in the ones column, -1 in the

threes column, 0 in the nines column, and +1 in the twenty-sevens column,

for a total value of 1*27 + 0*9 -1*3 + 1*1 == 25.

For this problem, write functions that convert to and from balanced ternary
analogous to the base-conversions above:

• balancedTernaryToNum(S), which should return the decimal value

equivalent to the balanced ternary string S

• numToBalancedTernary(N), which should return a balanced ternary string

representing the value of the argument N

Again, a good strategy here is to start with copies of
your numToTernary and ternaryToNum functions, and then alter them to handle

balanced ternary instead.

Here are some examples with which to check your functions:

In [1]: balancedTernaryToNum('+---0')

Out[1]: 42

In [2]: balancedTernaryToNum('++-0+')

Out[2]: 100

In [3]: numToBalancedTernary(42)

Out[3]: '+---0'

In [4]: numToBalancedTernary(100)

Out[4]: '++-0+'

As a hint, consider that switching from a digit of value 2 to a digit of value -

1 actually decreases the value of N by 3! To avoid changing the overall
value of N, you'll have to get that three back—by adding it back in!

Though binary is the representation underlying all of today's digital

machines, it was not always so—and who knows how long binary's
predominance will continue? Qubits are lurking!

Submit!

When you're finished with the lab (or the time is up!), go ahead and submit
your hw4pr1.py file to the submission server.

The rest of the homework will involve some additional conversion and
compressions (image compression, in particular).

If you're considering working ahead, it's true that Gold's first four functions

of hw4pr2.py require no additional background ...

http://www.mortati.com/glusker/fowler/
https://www.cs.hmc.edu/twiki/bin/view/CS5/SubmissionPage
https://www.cs.hmc.edu/twiki/bin/view/CS5/CleverConversionsGold
https://www.cs.hmc.edu/twiki/bin/view/CS5/CleverConversionsGold

	Lab 4 From Decimal to Binary and beyond...
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab4 on 3/20/2017
	Function #1 isOdd(N) warm-up function!
	Function #2 numToBinary(N)
	Function #3 binaryToNum(S)
	Functions #4 and #5 increment(S) and count(S, n)

	Base-3: ternary and balanced ternary
	Functions #6 and #7 numToTernary(N) and ternaryToNum(S)
	Finale! f'ns #8 and #9 balancedTernaryToNum(S) and numToBalancedTernary(N)
	Submit!

