
Homework 1 Problem 1 hw1pr1.py (Lab)

Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab1A
on 3/20/2017

Welcome to Lab 1!

Please be sure that you've signed one of the attendance pages for this
week's lab!

There are two parts to this lab:

• the first part is hw1pr1.py: you'll gain experience splicing and

interacting with Python data
• the second part is hw1pr2.py: you'll write a number of functions, the

fundamental building blocks of software

Trying out the Python interpreter (or shell) —

ipython!

There's no file nor anything to hand in for this part -- just open

ipython's shell by typing ipython at the command prompt and try out

the Python commands below...

You can tell if you're in the ipython shell by the prompt: In [n] (where n is

some number) or, on its own line,

In [1]:

Note that you don't have to type that prompt - it's already there!

Using VS Code's terminal

The text editor many of us are using, VS Code, has a built-in terminal. To

use it, go to the View menu and then choose Integrated Terminal. The

https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab1A

keyboard shortcut is control-` (control-backtick). Once you've opened the
built-in terminal, you can type ipython to start Python.

Using ipython's numbered prompts

The numbered prompts are great, because you can access all inputs (as
strings) and outputs (as whatever type they produce) via their numbers. To

see this, try these examples

In [1]: 6*7

Out[1]: 42

In [2]: Out[1]*2

Out[2]: 84

In [3]: In[1]*2

Out[3]: '6*76*7'

Cool!
Python's eval will evaluate strings. Try eval(Out[3]) in the example above!

However, our lab guidelines won't necessarily match which number you're
currently on, so don't worry if your prompt number doesn't match

ours - experiment!

Arithmetic with numbers, lists, strings, booleans, …

To get started, try a few arithmetic, string, and list expressions in the

Python interpreter, e.g.,

In [1]: 40 + 2

Out[1]: 42

In [2]: 40 ** 2

Out[2]: 1600

In [3]: 40 % 7 # 40 "mod" 7

Out[3]: 5

In [3]: 40 // 11 # integer division

Out[3]: 3

In [4]: 'hi there!'

Out[4]: 'hi there!' # (notice Python's politeness!)

In [5]: 'who are you?'

Out[5]: 'who are you?' # (though sometimes it's a bit touchy.)

In [6]: L = [0,1,2,3] # You can label data (here, a list) with a

name (here, the name L)

(no response from Python)

In [7]: L

Out[7]: [0,1,2,3] # You can see the data (here, a list) referred

to by a name (here, L)

In [8]: L[1:]

Out[8]: [1,2,3] # You can slice lists (here, using the name L)

In [9]: L[::-1]

Out[9]: [3,2,1,0] # You can reverse lists (<i>or strings!</i>)

using "skip"-slicing with a =-1= asthe amount to skip.

In [10]: [6,7,8,9][1:]

Out[10]: [7,8,9] # You can slice lists using the raw list

instead of the name (Not that this would be very useful,

admittedly!)

In [11]: 100*L + [42]*100

Out[11]: (a list with 500 elements)

In [12]: L = 42 # You can reassign the name L to another value,

even of a different type. Now, L names the integer 42, instead

of the list it used to represent.

(no response from Python)

In [13]: L == 42 # Two equals are different than 1! This

<i>tests for equality</i>.

Out[13]: True

In [14]: L != 42 # This tests for "not equal."

Out[14]: False

Errors and Exceptions

Mistakes are unavoidable! So, you'll encounter Python errors. They're

sometimes called exceptions, as well.

One of the most important habits we hope you'll practice in CS 5 is this:
if an error happens, consider it an opportunity, not a problem!

It's true, in that an error is a chance to

1. improve your intuition about how computation works, i.e., the
"machine's mindset,"

2. improve the software you're developing (or your understanding of it),
and

3. build on your debugging skills... .

So, let's create some errors, which Python calls exceptions:

Give yourself two minutes. In that time, see how many of these Python

exceptions you can cause!

If you create others, all the better—let an instructor or tutor know, and we'll
add them to this list:

• NameError (an unrecognized variable!)

• TypeError (try slicing an integer for example!)

• ZeroDivisionError (perhaps clear from its name)

• SyntaxError (the error that kittens most often produce when walking

over the keyboard)
• IndexError (try an out-of-bounds index into a sequence)
• OverflowError

Remember that integers won't overflow—if they get too big to fit in
memory, they'll simply crash Python. To obtain this error, therefore,
you'll need to use a floating-point value, such as 42.0, in some

mathematical expression that produces very large values! For
example, use the power ** operator!

Lists! Challenges with slicing and indexing

This problem will exercise your slicing-and-indexing skills.

First, create a new text file and save it with the name hw1pr1.py .

To do: Then, copy the following starting lines into your new plain-text file:

CS5 Gold, hw1pr1

Filename: hw1pr1.py

Name:

Problem description: First Python lab!

pi = [3,1,4,1,5,9]

e = [2,7,1]

Example problem (problem 0): [2,7,5,9]

answer0 = e[0:2] + pi[-2:]

print(answer0)

A couple of notes on this code:

• Be sure to save this as a plain-text file named hw1pr1.py You'll need

the .py extension.

• After the initial comment, this code defines the list named pi and the

list named e.

• When you run the file, the line answer0 = e[0:2] + pi[-2:] will define

the value held by the variable answer0.

• Then, the code will print the value of the variable answer0.

To run the code:

• First, at your command-line, make sure you're in the folder/location

where hw1pr1.py is located. Perhaps it's the desktop or another folder.

• Run ipython

• Then, within Python, enter run hw1pr1.py

• (Tab-completion and up-arrow can make things easier.)

Composing new lists from pi, e, and list

operations

The problems below ask you to create several lists using only the list
named pi, the list named e, and these list operations:

• list indexing, such as pi[0]

• list slicing, such as e[1:]

• skip-slicing, such as pi[0:6:2]

• list concatenation with +, such as e[0:2] + pi[-2:]

(for this problem, we ask you not to use + to add values numerically)

• Please leave a blank line or two between your answers (to keep
things readable - this makes the graders happy)!

• Once you've run the file once, you can experiment at Python's

command-line - try it by typing e[0:1] + pi[0:1]

• For fun only, you might try using as few operations as possible, to
keep your answers elegant and efficient.

• Here are the problems:

• 0. Use pi and/or e to create the list [2,7,5,9]. This is the example

above, stored in the variable answer0.

• 1. Use pi and/or e to create the list [7,1].

o As above, store this list in the variable answer1. Here is a start, to

copy-and-paste:
o

o # Problem 1: creating [7,1]

o answer1 = e[1:2] # not the right answer, but a

start...

o print(answer1)

o

• 2. Use pi and/or e to create the list [9,1,1]. Store this list in the

variable answer2.

• 3. Use pi and/or e to create the list [1,4,1,5,9]. Store this list in the

variable answer3.

• 4. Use pi and/or e to create the list [1,2,3,4,5]. Store this list in the

variable answer4.

Strings! Slicing and indexing

This problem continues in the style of the last one, but uses strings rather
than lists.
 First, copy these lines into your hw1pr1.py file underneath the previous

problems (with some blank lines to keep things apart!):

Lab1 string practice

h = 'harvey'

m = 'mudd'

c = 'college'

You may use any combination of these four string operations:

• String indexing, e.g., h[0]

• String slicing, e.g., m[1:]

• String concatenation, +, e.g., h + m

• Repetition, *, e.g., 42*c

Again, the number of operations in the shortest answers that we know about
are in parentheses. If you'd like, you might see if your answers are equally

or more concise.
However, any correct answer is OK - there's no requirement to use a
small number of operations.

Example problem (#5): Use h, m, and c to create 'hey'. Store this string in

the variable answer5. We used 3 operations.

Answer to example 5 - please copy and paste this into your file:

Problem 5: 'hey'

answer5 = h[0] + h[4:6]

print(answer5)

The 3 operations are 1 use of list indexing, 1 slice, and 1 concatenation
with +.

Here are the string-creation challenges (and, in parens, our most efficient

answers, at least so far):

• Remember that the "most efficient answers" are not at all

needed (they may be fun, but any working answer is 100% OK!)

• 5. (The example from above) Create hey and store this string in the

variable answer5. (3 ops.)

• 6. Create collude and store this string in the variable answer6. (our

best: 5 ops.)

• 7. Create arveyudd and store this string in the variable answer7. (our

best: 3 ops.)

• 8. Create hardeharharhar and store this string in the variable answer8.

(our best: 8 ops.)

• 9. Create legomyego and store this string in the variable answer9. (our

best: 8 ops.)

• 10. Create clearcall and store this string in the variable answer10. (our

best: 9 ops.)

If you have gotten to this point, you have completed the first half of Lab 1!
You should submit your hw1pr1.py file at the Submission Site .

Excellent! Now, on to Lab 1, Problem 2: functions

http://www.cs.hmc.edu/submit
https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab1B

	Homework 1 Problem 1 hw1pr1.py (Lab)
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab1A on 3/20/2017
	Trying out the Python interpreter (or shell) — ipython!
	Using VS Code's terminal
	Using ipython's numbered prompts

	Errors and Exceptions
	Lists! Challenges with slicing and indexing
	Composing new lists from pi, e, and list operations

	Strings! Slicing and indexing

