
Lab 10: Virtual Art

Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab10

on 3/1/2017

a.k.a. building a Date class…

One of Prof. Art Benjamin's abilities is to compute (in his head) the day of

the week that any past date fell on. For example, if you tell him you were
born on June 13, 1997 (6/13/1997), he'll be able to tell you that you were

born on a Friday (the 13th, no less!)

This week's lab will guide you through creating a class named Date from

which you will be able to create objects of type Date. Your objects will have

the ability to find the day of the week they fell on (or will fall

on)…hence, virtual Art!

The starting file…

Grab this starting zip file: hw10pr1.zip from this link. You'll want to

start with the hw10pr1.py file inside it. Windows users: be sure to unzip the

archive—Windows will let you browse the files even without unzipping, but it
won't let you open or run them…

The Date class

Take a moment to look over the hw10pr1.py file as it stands so far…

Notice that in this Date class there are three data members:

 A data member holding the month (this is self.month)

 A data member holding the day of the month (this is self.day)

 A data member holding the year (this is self.year)

Note that self is used to denote any object (that is, any variable or value) of

class Date!

https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab10
http://www.cs.hmc.edu/~cs5grad/cs5/hw10pr1.zip

Methods are just functions…

Object-oriented programming tends to have some of its own names for

familiar things. For example, method is the "OOP" name for function. In

particular, a method is a function whose first argument is self!

Note that the Date class has an __init__ method and a __repr__ method. As

we've discussed in class, Python expects to see these special methods in

virtually every class. The double underscores before and after these method
names indicate that these methods are special ones that Python knows to

look for. In the case of __init__, this is the method that Python looks for

when making a new Date object. In the case of __repr__, this is the method

that Python looks for when it needs to represent the object as a string.

Notice the line

 s = "%02d/%02d/%04d" % (self.month, self.day,

self.year)

in the repr method. This constructs a string with the month, day, and the

year, formatted very nicely to have exactly two digits places for the month,
two digit places for the day, and four for the year.

We've also defined our own isLeapYear method. There are no double-

underscores here, because Python didn't "expect" this method, but it
certainly doesn't "object" to it either. (Clearly our puns have no class!)

Note on "method":
Traditionally, functions called by objects are called methods. There is no

really good reason for this. They are functions - the only thing special about
them is that they are defined in a class and they are called after a dot

(period) following the name of an object. For example, you might try these:

In [1]: d = Date(11, 9, 2016)

In [2]: d.isLeapYear()

Out[2]: True

In [3]: ny = Date(1, 1, 2017)

In [4]: ny.isLeapYear()

Out[4]: False

In [5]: Date(1, 1, 1900).isLeapYear() # no variable needed!

Out[5]: False

What's up with self?

One odd thing about the above example is that three different objects of

type Date are calling the same isLeapYear code. How does

the isLeapYear method tell the different objects apart?

The method does not know the name of the variable that calls it!

In fact, in the third example, there is no variable name! The answer is self.

The self variable holds the object that calls the method, including all of

its data members.

This is why self is always the first argument to all of the methods in

the Date class (and in any class that you define!): because self is how the

method can access the individual data members in the object that called it.

Please notice also: this means that a method always has at least one

argument, namely self. However, this value is passed in implicitly when the

method is called. For example, isLeapYear is invoked in the example above

as Date(1,1,1900).isLeapYear(), and Python automatically passed self, in this

case the object Date(1,1,1900), as the first argument to

the isLeapYear method.

Testing your initial Date class:

Just to get a feel for how to test your new datatype, try out the following

calls:

create an object named d with the constructor

In [1]: d = Date(11, 9, 2016) # use another day if you

prefer...

show d's value

In [2]: d

Out[2]: 11/09/2016

a printing example

In [3]: print('My favorite day is', d)

My favorite day is 11/09/2016

create another object named d2

of *the same date*

In [4]: d2 = Date(11, 9, 2016)

show its value

In [5]: d2

Out[5]: 11/09/2016 # _looks_ the same...

are they the same?

In [6]: d == d2

Out[6]: False

look at their memory locations

In [7]: id(d) # return memory address

Out[7]: 413488 # your result will be different...

In [8]: id(d2) # again...

Out[8]: 430408 # and this should differ from above!

check if d2 is in a leap year...

In [9]: d2.isLeapYear()

Out[9]: True

yet another object of type Date

a distant New Year's Day

Question: where will you be on this date?

In [10]: d3 = Date(1, 1, 2020)

check if d3 is in a leap year

In [11]: d3.isLeapYear()

Out[11]: True

copy and equals

For this part, you should paste the following two methods (code provided)

into your Date class and then test them.

Here are those two methods; we are providing the code so that you have

several more examples of defining functions inside a class:

copy(self) Here is the code for the copy method:

 def copy(self):

 """ Returns a new object with the same month, day, year

 as the calling object (self).

 """

 dnew = Date(self.month, self.day, self.year)

 return dnew

This copy method returns a newly constructed object of type Date with the

same month, day, and year that the calling object has. Remember that the

calling object is named self, so the calling object's month is self.month, the

calling object's day is self.day, and so on.

Since you want to create a newly constructed object, you need to call the

constructor! This is what you see happening in the copy method.

Try out these examples, which use last year's New Year's Day. First

we don't use copy:

In [1]: d = Date(1, 1, 2016)

In [2]: d2 = d

In [3]: id(d)

Out[3]: 430542 # your memory address will differ

In [4]: id(d2)

Out[4]: 430542 # but d2 should have the SAME mem. address

as d!

In [5]: d == d2

Out[5]: True # so this should be True...

Next, you'll show that copy does make a deep copy (instead of a copy of only

the reference, or "shallow" copy):

In [2]: d = Date(1, 1, 2016) # starting fresh...

In [3]: d2 = d.copy()

In [4]: d

Out[4]: 01/01/2016

In [5]: d2

Out[5]: 01/01/2016

In [6]: id(d)

Out[6]: 430568 # your memory address will differ

In [7]: id(d2)

Out[7]: 413488 # but d2 should be different from d!

In [8]: d == d2

Out[8]: False # thus, this should be false...

equals(self, d2) Here is the code for this method:

 def equals(self, d2):

 """ Decides if self and d2 represent the same calendar

date,

 whether or not they are the in the same place in

memory.

 """

 if self.year == d2.year and self.month == d2.month and

self.day == d2.day:

 return True

 else:

 return False

This method should return True if the calling object (named self) and the

argument (named d2) represent the same calendar date. If they do not

represent the same calendar date, this method should return False. The

examples above show that the same calendar date may be represented at

multiple locations in memory—in that case the == operator returnsFalse. This

method can be used to see if two objects represent the same calendar date,
regardless of whether they are at the same location in memory.

Try these examples (after reloading) to get the hang of how

this equals method works.

In [1]: d = Date(1, 1, 2016)

In [2]: d2 = d.copy()

In [3]: d

Out[3]: 01/01/2016

In [4]: d2

Out[4]: 01/01/2016

In [5]: d == d2

Out[5]: False # this should be False!

In [6]: d.equals(d2)

Out[6]: True # but this should be True!

In [7]: d.equals(Date(1, 1, 2016)) # this is OK, too!

Out[7]: True

In [8]: d == Date(1, 1, 2016) # this tests memory

addresses

Out[8]: False # so it should be False

Redefining the == operator in addition

In Python you can also define operators for your own classes. For example,

since the above equals method is how we want to express double-equals, ==,

you can do so by adding a method named __eq__. Note that that name

has two underscores on each side of the eq

 def __eq__(self, d2):

 """ Overrides the == operator so that it declares two of

the same dates in history as ==

 This way , we don't need to use the awkward

d.equals(d2) syntax...

 """

 if self.year == d2.year and self.month == d2.month and

self.day == d2.day:

 return True

 else:

 return False

Be sure to include this in your Date class as well. Now, == should work with

objects of class Date!

Next, the lab will ask you to implement a few of your own methods for

the Date class from scratch. We talked about these in class...

Be sure to add a docstring to each of the methods you write! (Recall that the
term method refers to a function that is a member of a user-defined class.)

isBefore(self, d2) Next, add the following method to your Date class:

 isBefore(self, d2):

This method should return True if the calling object is a calendar

date before the argument named d2 (which will always be an object of

type Date). If self and d2 represent the same day, this method should

return False. Similarly, if self is after d2, this should return False.

 Hint: There are many approaches. A reasonable approach is to first

compare the years: self.year < d2.year, then the months, then the

days. But be sure to compare months only when the years are equal.

There is a similar constraint on the days (only compare them
when both the months and years are equal).

Testing isBefore To test your isBefore method, you should try several test

cases of your own design. Here are a few to get you started:

In [1]: ny = Date(1,1,2017) # New Year's

In [2]: d = Date(11,9,2016)

In [3]: ny.isBefore(d)

Out[3]: False

In [4]: d.isBefore(ny)

Out[4]: True

In [5]: d.isBefore(d) # should be False!

Out[5]: False

Similar to what we did with __eq__, you can optionally redefine

the < operator. Its name is __lt__.

isAfter(self, d2) Next, add the following method to your Date class:

 isAfter(self, d2):

This method should return True if the calling object is a calendar

date after the argument named d2 (which will always be an object of

type Date). If self and d2 represent the same day, this method should

return False. Similarly, if self is before d2, this should return False.

You can emulate your isBefore code here OR

 you might consider how to use both the isBefore and equals methods

to write isAfter.

Testing isAfter To test your isAfter method, you should try several test

cases of your own design. For example, reverse the examples shown above

for isBefore.

Also, you can optionally redefine the > operator. Its name is __gt__.

tomorrow(self) Next, add the following method to your Date class (you

may have class notes that help…)

 tomorrow(self):

This method should NOT RETURN ANYTHING! Rather, it

should change the calling object so that it represents one calendar

day after the date it originally represented. This means

that self.day will definitely change. What's

more, self.month and self.year might change.

 You might use the "Luke" trick, which seems Jedi-like to us, and

define fdays = 28 + self.isLeapYear() ... or you might avoid that trick

for fear that Prof. Kuenning will become apocalyptically angry for

writing unreadable (too-clever) code [important disclaimer: Prof.
Kuenning himself acknowledged this last bit], and instead write a

proper if-else statement to accomplish the same thing.

 Then, list DIM = [0,31,fdays,31,30,31,30,31,31,30,31,30,31] of days-in-

each-month is useful to have! It makes it easy to determine how many

days there are in any particular month (self.month).

o Do you see why the initial 0 is helpful here? It is!

Testing tomorrow To test your tomorrow method, you should try several

test cases of your own design. Here are a couple of randomly chosen ones to
get you started:

In [1]: d = Date(12, 31, 2016)

In [2]: d

Out[2]: 12/31/2016

In [3]: d.tomorrow()

In [4]: d

Out[4]: 01/01/2017

In [5]: d = Date(2, 28, 2016)

In [6]: d.tomorrow()

In [7]: d

Out[7]: 02/29/2016

In [8]: d.tomorrow()

In [9]: d

Out[9]: 03/01/2016

yesterday(self) Next, add the following this complementary method to

your Date class:

 yesterday(self):

Like tomorrow, this method should not return anything. Again, it
should change the calling object so that it represents one calendar

day before the date it originally represented. Again, self.day will

definitely change, and self.month and self.year might change.

Testing yesterday To test your yesterday method, you should try several

test cases of your own design. Here are the reverses of the previous tests:

In [2]: d = Date(1, 1, 2016)

In [3]: d

Out[3]: 01/01/2016

In [4]: d.yesterday()

In [5]: d

Out[5]: 12/31/2015

In [6]: d = Date(3, 1, 2016)

In [7]: d.yesterday()

In [8]: d

Out[8]: 02/29/2016

In [9]: d.yesterday()

In [10]: d

Out[10]: 02/28/2016

addNDays(self, N) Next, add the following method to your Date class:

 addNDays(self, N):

This method only needs to handle nonnegative integer arguments N.

Like the tomorrow method, this method should not return anything.

Rather, it should change the calling object so that it

represents N calendar days after the date it originally represented.

Don't copy any code from the tomorrow method!

Instead, consider how you could call the tomorrow method inside a for loop

in order to implement this!

In addition, this method should print all of the dates from the starting date
to the finishing date, inclusive of both endpoints. Remember that the

line print(self) can be used to print an object from within one of that

object's methods. See below for examples of output.

Testing To test your addNDays method, you should try several test cases of

your own design. Here are a couple to start with:

In [1]: d = Date(11, 9, 2016)

In [2]: d.addNDays(3)

11/09/2016 # printing the first one is optional...

11/10/2016

11/11/2016

11/12/2016

In [3]: d

Out[3]: 11/12/2016

In [4]: d = Date(11, 9, 2016) # re-create the original Date

In [5]: d.addNDays(1278)

11/09/2016 # printing the first one is optional

11/10/2016

... lots of dates skipped ...

05/09/2020

05/10/2020

In [6]: d

Out[6]: 05/10/2020 # graduation! (if you're now a first-

year...)

You can check your own date arithmetic with this
website: http://www.timeanddate.com/date/dateadd.html. Note that 1752

was a weird year for the United States/colonies' calendar—especially
September! (And 1712 saw the only Feb. 30th - and only in Sweden!) Note

that your Date class does not need to handle these unusual situations— in

fact, it shouldn't do so, so that we can test things consistently!

subNDays(self, N) Next, include the following method in your Date class:

 subNDays(self, N):

This method only needs to handle nonnegative integer arguments N.

Like the addNDays method, this method should not return anything.
Rather, it should change the calling object so that it

represents N calendar days before the date it originally represented.

Analogous to the previous case, consider using yesterday and

a for loop to implement this!

In addition, this method should print all of the dates from the starting date

to the finishing date, inclusive of both endpoints. Again, this mirrors

the addNDays method. See below for examples of the output.

http://www.timeanddate.com/date/dateadd.html

Testing subNDays: try reversing the above test cases!

If you like redefining Python's operators, you could create

 __iadd__(self,N) for addNDays(self,N) - this creates the ability to use d

+= 1 or d += 1000

 __isub__(self,N) for subNDays(self,N) - this creates the ability to use d

-= 1 or d 1= 1000

diff(self, d2) Next, add the following method to your Date class:

 diff(self, d2):

This method should return an integer representing the number of

days between self and d2. You can think of it as returning the integer

representing

 self - d2

In fact, __sub__ is the subtraction operator - feel free to define it, in addition

to diff.

Dates are more complicated than integers!! So, implementing diff will be

more involved. See below for some hints….

One crucial point: this method should NOT change self NOR should it

change d2!

Rather, you should create and manipulate copies of self and d2—this will

ensure that the originals remain unchanged.

Thus, make a copy of each of self and d2 and then only use and change

those copies! For example,

 self_copy = self.copy()
 d2_copy = d2.copy()

https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types

Also, The sign of the return value is important! Consider these three

cases:

 If self and d2 represent the same calendar date, this

method diff(self, d2) should return 0.

 If self is before d2, this method diff(self, d2) should return

a negative integer equal to the number of days between the two
dates.

 If self is after d2, this method diff(self, d2) should return

a positive integer equal to the number of days between the two

dates.

Two approaches not to use!

 First, don't try to subtract years, months, and days between two

dates: this is way too error-prone.

 By the same token, however, don't use addNDays or subNDays to

implement your diff method. Checking all of the possible difference

amounts will be too slow! Rather, implement diff in the same style as

those two methods: namely, using yesterday and/or tomorrow and loops.

What to do?

 So, you will want to use the tomorrow and yesterday methods you've

already written—now, they will be inside a while loop!

 The test for the while loop could be something like while

day1.isBefore(day2): or it may use isAfter…

 Use a counter variable to count the number of times you need to loop
before it finishes: that is your answer (perhaps with a negative sign)!

Testing diff To test your diff method, you should try several test cases.

Here are two relatively nearby pairs of dates:

In [1]: d = Date(11,9,2016) # now...

In [2]: d2 = Date(12,16,2016) # winter break!

In [3]: d2.diff(d)

Out[3]: 37

In [4]: d.diff(d2)

Out[4]: -37

In [5]: d # make sure they did not change!

Out[5]: 11/9/2016

In [6]: d2 # make sure they did not change!

Out[6]: 12/16/2016

Here are two that pass over a leap year...

In [7]: d3 = Date(12,1,2015)

In [8]: d4 = Date(3,15,2016)

In [9]: d4.diff(d3)

Out[9]: 105

And here are two relatively distant pairs of dates:

In [10]: d = Date(11, 9, 2016)

In [11]: d.diff(Date(1, 1, 1899))

Out[11]: 43046

In [12]: d.diff(Date(1, 1, 2101))

Out[12]: -30733

Use your diff method to compute your own age - or someone else's age - in

days!
You can check other differences

at www.timeanddate.com/date/duration.html.

dow(self) Next, add the following method to your Date class:

 dow(self):

This method should return a string that indicates the day of the week

(dow) of the object (of type Date) that calls it. That is, this method

returns one of the following strings: "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday", "Saturday", or "Sunday".

Hint: How might it help to find the diff from a known date, like Wednesday,

November 9, 2016? How might the mod (%) operator help?

Testing dow To test your dow method, you should try several test cases of

your own design. Here are a few to get you started:

http://www.timeanddate.com/date/duration.html

In [1]: d = Date(12, 7, 1941)

In [2]: d.dow()

Out[2]: 'Sunday'

In [3]: Date(10, 28, 1929).dow() # dow is appropriate for

the Dow Jones's crash!

Out[3]: 'Monday'

In [4]: Date(10, 19, 1987).dow() # ditto: another crash!

Beware October Mondays!

Out[4]: 'Monday'

In [5]: d = Date(1, 1, 2100)

In [6]: d.dow()

Out[6]: 'Friday'

Submission

Congratulations—you have created a Date class whose objects can compute

the differences and the days of the week for any calendar dates at all!

Ans, you've completed Lab 10. Be sure to submit in the usual place!

If you'd like, you can now compute what day of the week your birthday is

most likely to be for the next century... or NY's day...

Optional Using your Date class…

To take advantage of your Date class, we will put it to use! This will include

an investigation of your birthday's most likely day-of-the-week, as well as

our calendar's statistics for the 13th of each month.

Try the following code and then answer the three questions below.

Consider the following function—you will want to paste it at the bottom of

your hw10pr1.py file. Be sure to paste it OUTSIDE the Date class. That is,

make sure this function is indented all the way to the left (not one

indentation rightward, because this is not a method of the Date class)!

https://www.cs.hmc.edu/twiki/bin/view/CS5/SubmissionPage

This nycounter function uses a dictionary data structure. You may or may not

have seen these (we will use them this Thursday and on this week's
homework).

Briefly, a dictionary d is initialized with the code d = {} (note the curly

braces), but it is used very much like a normal list. Its key difference is
that strings can act as the indices of the list! As a result, dictionaries are

great for counting the number of times a string appears. Here is an example
of just that:

def nycounter():

 """Looking ahead to 100 years of NY celebrations..."""

 dowd = {} # dowd == 'day of week dictionary'

 dowd["Sunday"] = 0 # a 0 entry for Sunday

 dowd["Monday"] = 0 # and so on...

 dowd["Tuesday"] = 0

 dowd["Wednesday"] = 0

 dowd["Thursday"] = 0

 dowd["Friday"] = 0

 dowd["Saturday"] = 0

 # live for another 100 years...

 for year in range(2016, 2116):

 d = Date(1, 1, year) # get ny

 print('Current date is', d)

 s = d.dow() # get day of week

 dowd[s] += 1 # count it

 print('totals are', dowd)

 # we could return dowd here

 # but we don't need to right now

 # return dowd

First, try this nycounter function out:

In [1]: nycounter()

Question 1

In a comment above this nycounter function in your hw10pr1.py file, write one

or two sentences describing what this nycounter computes.

Question 2

Based on the nycounter example, write a function that will compute the same

information for your next 100 birthdays. Include the results in a comment

below your function.

Question 3 [What are the most common days of the week?]
Based on these two examples, write a function that will compute the same

information for the 13th of every month for the next 400 years. Since our
current calendar cycles every 400 years, your results will be the overall

frequency distributions for the 13th of the month for as long as people retain
our current calendar system. What day of the week is the 13th most and

least likely to fall on? Is it a tie?

Note that you will be taking full advantage of your computer's processor for

this problem. You might want to print out a status line, e.g., each year, so
that you know that it's making progress. Even so, this will be too

slow! So after you've watched the dates slow down and get tired of waiting,
consider the suggestions below and make the indicated changes to speed

things up (Control-C will kill your program so you don't have to wait for it to
finish).

The problem is with dow—it's checking longer and longer intervals. How

might you change how dow works to speed up the processing in this case?

One way to do it would be to write an alternative method in your Date class,

named dow2(self, refDate). The second argument to dow2 would be any

reference date of the appropriate day of the week. You would call

d.dow2(refDate)

instead of d.dow().

The idea is this: create a variable called refDate at the top of your

"thirteenthcounter" function. Initially give that variable the value of the

reference date used in your original dowfunction. However, as you seek into

the future, check each thirteenth to see if it's the same day of the week as

your original refDate. If it is the same day of the week as the original refDate,

then update the value of the refDate variable to be that new date—namely,

the thirteenth of the month you just found.

That way, you will never be calling dow2 on spans of dates of more than a

year—if you do this, it should finish in less than a minute. You'll notice that

the thirteenth is a Friday more often than several other days of the week...!

Starting code for the Date class

In case it's useful to have available from this webpage, here is the start of

the Date class that can be cut-and-pasted into a hw10pr1.py file.

class Date:

 """ a user-defined data structure that

 stores and manipulates dates

 """

 def __init__(self, month, day, year):

 """ the constructor for objects of type Date """

 self.month = month

 self.day = day

 self.year = year

 def __repr__(self):

 """ This method returns a string representation for the

 object of type Date that calls it (named self).

 ** Note that this _can_ be called explicitly, but

 it more often is used implicitly via the print

 statement or simply by expressing self's value.

 """

 s = "%02d/%02d/%04d" % (self.month, self.day,

self.year)

 return s

 def isLeapYear(self):

 """ Returns True if the calling object is

 in a leap year; False otherwise. """

 if self.year % 400 == 0: return True

 elif self.year % 100 == 0: return False

 elif self.year % 4 == 0: return True

 return False

