
www.engage-csedu.org S. Jones, Kennesaw State University

PROJECT/ASSIGNMENT: Console Game Application

Sandra H. Jones

Course: CSE 1301

Kennesaw State University

IMPLEMENTATION RECOMMENDATIONS

Notes to assist students with their efforts:

Following are some tips to help students with this assignment. I typically cover these during lecture and
include with assignment instructions. Because this assignment takes into account all aspects of the first
programming course, the goal is to get the students thinking about solving the problem before they
start working on the code.

• Make a plan before you start writing! Use meaningful array and variable names to make
creating this program easier.

• COMMENT YOUR CODE!

• It will be helpful to create a numMonstersCaught variable and pass by ref to the method that
evaluates a player guess.

• Use a do loop to run the game until all of the monsters are caught.

• You are REQUIRED to write at least two methods. You may write more if you'd like.

• Make sure you give your player good feedback regarding their status - guesses made, monsters
caught, etc.

• Feel free to make enhancements to your game!

--- -------------

Suggestions for increasing complexity of the assignment

The assignment above is rather simple, but it includes all of the foundational topics typically seen in an

introductory course. As written, it is ideal for a lab or homework assignment. Should you choose to use

this as a semester project, it is suggested that the complexity of the program be ramped up a bit to

really challenge the students. Following are some suggestions on how this might be done. Note that

these suggestions build on the base described above. The concepts tested are the same as those

describe above, but the overall problem is more challenging.

1. If the class has covered 2D arrays, consider implementing the game with a 2D array vs. 1D.

2. Add a Player class, with a name field and an array field of Weapons objects equal to or slightly

more than the number of Monsters that the game will contain.

3. Add a Weapon class that has a name field and a field for the ability of the weapon. e.g., Sword

defeats strength <= 10. Write a method in Main that automatically creates an array of weapons

of your choosing from which the player can select.

4. Add strength field to the Monster class.

5. Write a method of the Monster class to increase strength during each player turn that it is not

found. The initial value of strength and the amounts increased is up to the student, but each

Monster should be different.

www.engage-csedu.org S. Jones, Kennesaw State University

6. Write a Method of the Monster class to doBattle() when he is found. During the battle, the

player should have to think about the choice of Weapons he will use to fight and defeat the

Monster. Display the current list of Player weapons to help him decide. Write the method so

that it determines the winner, based on which is stronger – the weapon or the monster. Either

the Monster will be defeated and captured, or the player loses the battle.

Have the student use some creativity here with game play and progression. For instance, one

approach might be that if the player loses the battle, the Monster is placed in a new random

position in the array, and the user can choose a new Weapon. Another might be if all of the

Monsters are not captured when the Player is out of weapons, the game is over and the Player

loses. Having the student build in their own dynamics and mechanics will give him ownership of

his own game and encourage originality.

7. When the game starts, create the player instance based on user input. Write a method that

presents the player with a collection of weapons from which they can chose and a schedule of

what strengths it can defeat. e.g. Sword – defeats Monsters with strength of 10 or less.

Here you might also list the potential Monsters in the array and their strength. e.g., “Orcs start

with a strength of 8 and earn 3 points for each turn they remain hidden” so that the player

might strategize.

Notes for the instructor:

As students progress through an introductory programming course, I have found that while they may go

to lab assignments and successfully create topical programs, they sometimes they have trouble “putting

it all together” in a more robust, fully functioning way. I find that it helps to discuss this assignment

from an algorithmic perspective before they get started.

In my own class, I have found that additional explanation is usually needed for:

• Creating and working with collections of objects

• Understanding arrays as reference types

• The use of parallel arrays in the game

If the more complex problem is used, challenges often occur with:

• The notion of aggregation

• How instances of different classes can interact with one another

• Using creativity in our programming assignments, but focusing on how to implement those

ideas most efficiently and effectively.

One final note. This game was created as a reinforcement of fundamental programming topics before

moving on to creating games using a game engine. The “theme” of the game might be easily changed.

For instance, it might be miners looking for precious gems; it might be centered around pirates looking

for treasure; or one might even search for some piece of hidden data and be required to solve logic

puzzles when found. You might even ask your students to gear the game to a particular audience, or

develop their own idea of how the game may function.

