Introduction to Java

Welcome to the second CS15 lab! By now we've gone over objects, modeling, properties,
attributes, and how to put all of these things together into Java classes. It's perfectly okay if you
are feeling a little overwhelmed at this point; you've gone over a lot of new material very quickly.
But don't worry! This lab will help reinforce what you've learned by leading you through writing a
small Java program. The TAs walking around are there to help, so if you have any questions
about the lab, the lectures, or general course material, please ask us (sorry, this is not a time to
ask specific assignment questions).

General Programming Guidelines

Our goal is to get started using Java and learn how to create a class from scratch. Before we
get started on the mini-assignment, let's go over some general Java and programming
guidelines:

e Packages

e C(Classes

e Methods and Parameters

e Constructors
Packages

Java programs are built upon classes — each program needs to have at least one. As the
programs you write grow in size, it can get messy to have all of your classes lying everywhere.
Thankfully, Java organizes classes into packages. This is an extension of functions and classes
to help keep code organized and manageable. The best way to think of a package is as a stand
alone group of classes that performs a certain task. For example, if your program was a video
game, possible packages within that game could include the graphics package, the physics
package, the Al package, the Networking package, etc. Packages can consist of smaller
packages (the physics package could contain a math package, the graphics package could
contain a geometry package, and so on). All Java classes should belong to a package', and you
specify that package by typing:

package <some package>;
at the very beginning of the file (before you even declare the class), and without the angle

brackets. All this being said, the programs in CS15 aren't big enough to need multiple
packages, so the name of your packages will simply be the names of the programs.

1 The only real exception is when you are writing a very small Java program that consists of only one class.



Classes

Now that we understand packages, let's move onto making a new class. Each Java class
should be in its own file, with the name of the class being the name of the file?. All Java files
should end in . java. For example, a Clown class would be saved as Clown. java. If you don’t
remember how to declare a class, you can look back over the lecture notes, although Eclipse
will generate the class declaration for you.

Check Point 1

1. Runthe cs015 install labIntro scriptto get the stencil code for lab 1. This will
create an App.java file in /lhome/<yourlogin>/course/cs015/lablntro/.

2. Open Eclipse and find the labintro package in your cs015 project folder (if you don’t
see it try hitting F5 to refresh). The labIntro package should contain a single class
called 2pp. java.

3. With your labintro package selected, go to File >> New >> Class.

1. For the Source folder, make sure you have “cs015”, if not, use the Browse
option to locate the cs015 folder.

2. For Package, make sure you have lablntro, if not, use the Browse option to
locate the lablintro folder.

3. For Name type: CupcakeMaker (.java will be automatically appended).

4. Hit Finish.

4. The file should be created and opened in the Editor Region. Eclipse generates the
package declaration and the class body. Write an empty constructor for
CupcakeMaker. This is just a simple constructor that does nothing.

5. Right-click App. java and hit Run As >> Java Application to run it.

Methods and Parameters

A class can't do anything without you defining some capabilities for it. If you had a Robot class,
you would want it to do something cool like: walk, dance, cook, maybe even do your CS15
assignments for you. Java models these capabilities using methods. Methods have a specific
syntax; refer to lectures or the book if you don't remember.

Sometimes a method needs outside information in order to perform its task. A way to pass
information to a method is through parameters. For example, a Robot's cook (. ..) method
needs to know what to cook. Since your Robot is a culinary genius, if you didn't use
parameters, you would end up writing tons of cook methods for every possible dish your Robot

2 There are classes called inner classes that do not follow this rule. We will be going over them in class in 2 weeks.



can cook! Just think: cookChicken (), cookPork(), cookSteak(), cookTomatoes ()
...0r you can write one method that takes in a food that you want your Robot to cook as a
parameter. When a method takes a parameter, it uses that parameter as a variable.

Constructors

Let's not forget constructors; they are special methods that are automatically called when an
object gets instantiated (i.e. every time you call new <someConstructor> () ;). Every class
needs one®, and they are usually used to instantiate instance variables and set default values.
Going back to our Robot example, once a new Robot has been built, Java will look in the
constructor to see what default values should be given to its color, name, height, weight, etc.
Constructors have to be named the same as their class, so a Robot class will have a Robot
constructor. Look into the lecture slides for specific syntax.

Just as in any method, parameters are very useful for constructors. They can be used to set up
associations (knowledge of other objects) that are not known until an object is instantiated.
Remember the DogGroomer and PetShop example from lecture? We can use a parameter in
the Robot class to let the Robot know which student it belongs to and what color the student
ordered its Robot to be.

Now that you're more familiar with the Java syntayx, it's time to get down to business...

Making a Program

For this lab, you're going to be creating your own Cupcake! Currently, the Cupcake doesn't
have frosting, sprinkles, or a cherry. The CupcakeMaker class that you've started writing will be
responsible for creating frosting, sprinkles, and a cherry. It will then add these parts to the empty
cupcake. In order to do this, CupcakeMaker will have to know about the empty cupcake. Since
CupcakeMaker didn't instantiate Cupcake, the best way to do so is through an association
using the constructor.

3 If you don't write a constructor, Java will automatically create one for you, but it won't do anything.



Check Point 2

1. Modify the constructor for CupcakeMaker so that it receives one parameter of type
cs015.1abs.CupcakeSupport.Cupcake.

2. Inside the constructor of App. java, instantiate an instance of CupcakeMaker
passing it the empty Cupcake (look in the code comments to see where this is done).

3. Make sure your parameters are syntactically correct. If you get any errors, Eclipse will
show red lines under them. Try to fix the errors.

Now it's time to add all the other components. A great place to instantiate the object's
components is in the constructor of CupcakeMaker. Let's begin by adding frosting
(cs015.1labs.CupcakeSupport.CupcakeFrosting) to the cupcak--HOLD UP, ain’t no
one got time to type out cs015.1abs.CupcakeSupport.<...> everytime they want to
access the provided support code, which brings us to importing classes.

When we type cs015. labs.CupcakeSupport.CupcakeFrosting, we are telling Java that
we want to use the CupcakeFrosting class from the package
cs015.1labs.CupcakeSupport. It would be pretty annoying to have to write out the full
package name every time we want to use support code from the package
cs015.labs.CupcakeSupport (see, it's already annoying!).

By importing a class, the Java compiler will automatically fill in the package name of a class, so
you can simply refer to cs015.1labs.CupcakeSupport.CupcakeFrosting as
CupcakeFrosting.

Not only is this a benefit to your quality of life, but it also brings added readability and
conciseness to your code.

How to Import Classes:

In order to import classes, you must tell Java to import specific classes at the top of your code.
Here is an example:

package SaladMaker;

import kitchen.allThingsSalad.Lettuce;
import kitchen.allThingsSalad.Tomato;
import kitchen.allThingsSalad.Dressing;

public class SaladMaker {
public SaladMaker (Lettuce 1, Tomato t, Dressing d) {
<code elided>



As you can see, we've imported classes Lettuce, Tomato, and Dressing from
kitchen.allThingsSalad. But because we know that we are going to use all of the classes
contained in the a11ThingsSalad package, so we can

import kitchen.allThingsSalad.*, which indicates that we're importing all classes
contained in the package. This saves us a couple lines of code. Therefore, the following code is
synonymous to the above code:

package SaladMaker;
import kitchen.allThingsSalad.*;
public class SaladMaker {

public SaladMaker (Lettuce 1, Tomato t, Dressing d) {
<code elided>

Ok, now we’re ready for some frosting.

Check Point 3

1. Import all the support code for this lab, which can be found in the package
cs015.1abs.CupcakeSupport

2. Inside the constructor for CupcakeMaker, instantiate an instance of
CupcakeFrosting.

Hint: if you’re getting an error, make sure you’ve completed step 1 correctly.

3. Run the App. You'll see nothing has changed. This is because although you've made
the frosting, the empty cupcake has no idea that you've made them. Fortunately, the
cupcake has a method you can call to tell it about the frosting you've just made.

cs015.1labs.CupcakeSupport.Cupcake has a method add(...) thattakesin
a CupcakeFrosting as a parameter and does not return anything.
4. Callthe add(...) method inside the CupcakeMaker constructor on the Cupcaks

object that was passed in and pass it the instance of CupcakeFrosting that you've
just instantiated.
5. Run the App again. Yay! The cupcake has frosting now!

If you are having trouble getting the method invocation syntax correct, review the lecture notes.
Remember that there are 3 parts to a method invocation: the receiver of the message, the name
of the method, and the parameters (if there are any).


http://www.google.com/url?q=http%3A%2F%2Fwww.cs.brown.edu%2Fcourses%2Fcs015%2Flectures.html&sa=D&sntz=1&usg=AFQjCNGb1GaGFPUVZL8tv1PuYMBwA7o4sQ

Check Point 4

1. Finish up the empty cupcake by adding sprinkles and a cherry in the same way that
you added frosting. Here are the classes to add:
e s015.1abs.CupcakeSupport.CupcakeSprinkles
® cs015.1labs.CupcakeSupport.CupcakeCherry

Hint: If you successfully imported the support code package, do you have to include th
package name?

Coding Conventions

Programming has a very unique style element to it. While the compiler couldn't care less about
what your code looks like, neat and well formatted programs make it much easier to develop,
debug, and look back at old code later on. CS15 has a Coding Conventions guideline that you
should take a look at. (Coding Style will be part of the rubric for each programming assignment.)

Congratulations on finishing lab 1, you are well on your way to becoming an Xtreme Coder!

Make sure to get checked off by a TA before leaving!


http://www.google.com/url?q=http%3A%2F%2Fwww.cs.brown.edu%2Fcourses%2Fcs015%2Fconventions.html&sa=D&sntz=1&usg=AFQjCNGiaJqbG60FPacKfO5hbYGSkL0eJg
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.brown.edu%2Fcourses%2Fcs015%2Fconventions.html&sa=D&sntz=1&usg=AFQjCNGiaJqbG60FPacKfO5hbYGSkL0eJg
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.brown.edu%2Fcourses%2Fcs015%2Fconventions.html&sa=D&sntz=1&usg=AFQjCNGiaJqbG60FPacKfO5hbYGSkL0eJg

