
HW 7: The Sieve of Eratosthenes

The Sieve of Eratosthenes. Note that
multiples of primes 2, 3, 5, and 7 are
crossed out with a different mark. Multi-
ples of 11 and up don’t need to be crossed
out, since all left-over numbers must al-
ready be prime.

The Sieve is an ancient method for finding all
prime numbers up to a certain number. It is
done as follows:

1. Create a list of consecutive integers from
2 to n: (2, 3, 4, ..., n).

2. Initially, let p equal 2, the first prime num-
ber.

3. Strike from the list all multiples of p less
than or equal to n. (2p, 3p, 4p, etc.) (To
optimize, you may start striking at p2.)

4. Find the first number remaining on the list
after p (this number is the next prime);
replace p with this number.

5. Repeat steps 3 and 4 until p2 is greater
than n.

6. All the remaining numbers in the list are
prime.

The program will welcome the user, and invite
him or her to enter a number. After that, all
the prime numbers less than or equal to that number will be printed, separated by commas.
(Be sure there’s no comma at the very end.) Here is how this should look:

Welcome to the prime number calculator!

Please enter a maximum number: 100

The prime numbers from 2 to 100 are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71, 73, 79, 83, 89, 97

Use functions for this program. By dividing up the labor between multiple functions, devel-
opment will go much more smoothly. If you try to implement the whole thing inside of your
main() function, you will likely end up with a very large mess of spaghetti code that it’ll be
hard to think about coherently.

The easiest way to do this is with an array of booleans of length (n + 1), where n is the
maximum number. Initialize all the values to true, and then make them false as each index
is determined to not be a prime number. Note that this implementation means that there
will be booleans associated with the number 0 and the number 1 (which shouldn’t even be
considered to be prime). These booleans will be ignored.



Some further hints:

� This is the most difficult assignment you’ve had so far. Please don’t wait until the day
it’s due to start it.

� Don’t just calculate every number’s primality separately (using a function like the one
in Lab 4). You’ll get severely penalized if you do so.

� Think carefully about the subtasks you can implement with each function. For ex-
ample, you can make one function to create the array of booleans, one to filter out
all the nonprimes, and one to print the final result. Of these three steps, filtering out
the nonprimes is still a pretty big problem. You can make it easier if you make a
function whose job is to filter out all the multiples of a given prime, and then calling
this function from inside of a loop (so that you can call it with respect to 2, then 3,
then 5...).

� Once you have a function thought out, try to test it in isolation. Start out by writing
the initialization (getting the array set up), and the report (printing out the primes),
without worrying about striking out non-primes. Then, when you run the program,
it’ll tell you that every number above 1 is prime. Then, you can work on a function
to strike out multiples of a given prime. Run this with 2 as the argument. Now, the
“primes” are 2, 3, 5, 7, 9, etc. (At every stage, it works a little better.) Only move
on to the next step when you are 100% sure that the part you just wrote has no bugs.
You should absolutely not try to program the whole thing at once, and only test it in
the end. If you do that, you will be looking forward to a sleepless night as you try to
debug an unholy mess that probably contains many more problems than you’d like.

� Now more than ever before, it is important to comment your code as you write it (in-
stead of waiting until the very end), and to give your variables and functions intelligent
names. If you don’t, you’ll end up staring at tons of code you won’t understand—even
though you just wrote it!

There is a more in-depth description of the Sieve at http://en.wikipedia.org/wiki/

Sieve_of_Eratosthenes. This also includes an animated image to show how the Sieve
works.

This class should be called Sieve. Like always, all previous stylistic comments still hold.

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

