
Gold Problem 3: Fun with Functions

Copied from:
https://www.cs.hmc.edu/twiki/bin/view/CS5/FunctionFrenzyGold
on 3/20/2017

[50 points; individual or pair]

This problem asks you to use recursion to write several Python functions.
(There are also extra-credit opportunities... .)

Starting your file: hw1pr3.py

Create a new plain-text file named hw1pr3.py, for example, using Sublime or

another plain-text editor.

Here is a little bit of code to paste, if you'd like to use it to get started:

CS5 Gold, hw1pr3

Filename: hw1pr3.py

Name:

Problem description: Function Frenzy!

leng example from class

def leng(s):

 """ leng outputs the length of s

 input: s, which can be a string or list

 """

 if s == '' or s == []: # if empty string or empty list

 return 0

 else:

 return 1 + leng(s[1:])

In addition, the above code includes the leng example function we wrote in

class. Here are all of the ClassExamples.

Please put all of your functions for this problem in this single hw1pr3.py file,

and start your file with a comment that includes your name, the starting

date, and the assignment/problem name - all good things to have in each of

https://www.cs.hmc.edu/twiki/bin/view/CS5/FunctionFrenzyGold
https://www.cs.hmc.edu/twiki/bin/view/CS5/ClassExamples

your source-code files! All of the parts (functions) of this problem will be
submitted in that single file.

Be sure to name your functions exactly as specified -- including
capitalization!

Use recursion!

For this homework, the mult, dot, ind, scrabbleScore, and transcribe functions

should all be done using recursion. Compare them to the power, max, leng,

and vwl functions we did/saw in class this week. Those examples are

linked at this page and beside each problem for you to test and use as the
basis for your design.

Visualize recursion!

Some people have used this online Python visualizer to build intuition about

how recursion works. A couple details: in order to visualize a recursive call,
you'll need to (1) define your recursive function and then (2) make a test
call to it, perhaps immediately underneath it.

Here is an example that shows how to use the online Python visualizer to
test mylen('cs5'), one of the examples from class. Paste this code into the

visualizer linked above:

def mylen(s):

 if s == '':

 return 0

 else:

 return 1 + mylen(s[1:])

test = mylen('cs5')

print('test is', test)

You can adapt this for other examples from class or from your own code, as
well... . Try it!

Use docstrings!

https://www.cs.hmc.edu/twiki/bin/view/CS5/ClassExamples
http://www.pythontutor.com/visualize.html

Also, for each function be sure to include a docstring that indicates what the
function's inputs mean and what its output means, i.e., what the function

"does." (Omitting a docstring typically results in the function
being "doc'ed" a couple of points!) Here's an example of a docstring,
thorough if a bit verbose, that you are welcome to use for mult and as a

template for the others:

def mult(n, m):

 """ mult returns the product of its two inputs

 inputs: n and m are both integers

 output: the result upon multiplying n and m

 """

 code here ...

Warning! Notice that the docstring needs to be indented to the same level

as body of the function it's in. (Python is picky about this...).

Test!

Be sure to test your functions! It's tempting to write a function and feel like
it works, but if it hasn't been tested, it may have a small (or big!) error that
causes it to fail... .

For this week's assignments, we provide a set of tests that you can (and
should!) paste into your code. Then, when you run your file, the tests will
run and you can check (by sight, in this case) whether any of the tests has

not passed... .

For this week, if your functions pass the provided tests, they will pass all of
the graders' tests, too. (In the extra credit and in future assignments, we

may add more tests of our own... .)

Here's an example using the flipside(s) function from Lab 1. Paste this into

your file and run it:

def flipside(s):

 """ flipside swaps s's sides

 input s: a string

 """

 x = len(s)//2

 return s[x:] + s[:x]

Tests

print("flipside('carpets') petscar ==", flipside('carpets'))

print("flipside('homework') workhome ==", flipside('homework'))

print("flipside('flipside') sideflip ==", flipside('flipside'))

print("flipside('az') za ==", flipside('az'))

print("flipside('a') a ==", flipside('a'))

print("flipside('') ==", flipside(''))

Be sure to paste the tests for the functions below, too - and run them!

The functions to write...

• Function 1: First, write mult(n, m). Here is a full description of how

it should work:

mult(n, m) should output the product of the two integers n and m.

Since this would be a bit too easy if the multiplication operator * were
used, for this function, you are limited to using

addition/subtraction/negation operators, along with recursion. (Use
the power function we did in class as a guide.) Some examples:

• In [1]: mult(6, 7)

• Out[1]: 42

•

• In [2]: mult(6, -3)

• Out[2]: -18

ClassExamples This link contains the recursive power function you

wrote in class.

Here are the tests to try:

Tests

print("mult(6,7) 42 ==", mult(6,7))

print("mult(6,-7) -42 ==", mult(6,-7))

print("mult(-6,7) -42 ==", mult(-6,7))

print("mult(-6,-7) 42 ==", mult(-6,-7))

print("mult(6,0) 0 ==", mult(6,0))

print("mult(0,7) 0 ==", mult(0,7))

print("mult(0,0) 0 ==", mult(0,0))

https://www.cs.hmc.edu/twiki/bin/view/CS5/ClassExamples

• Function 2: Next, write dot(L, K). Here is this function's

description:

dot(L, K) should output the dot product of the lists L and K. If these

two input lists are not of equal length, dot should output 0.0. If these

two lists are both empty, dot also should output 0.0. You should

assume that the input lists contain only numeric values. (Compare this
with the mylen example we did in class, but be sure to account

for both lists -- and remember they're lists, not strings...! Here is
the leng example, modified slightly to handle both lists and strings!

What's the dot product? The dot product of two vectors or lists is the

sum of the products of the elements in the same position in the two
vectors. for example, the first result is 5*6 plus 3*4, which is 42. The

result here is 42.0, because we used a float of 0.0 in the base case... .

You're welcome to use the multiplication operator * for this problem,

for sure!

 In [1]: dot([5,3], [6,4])

 Out[1]: 42.0

 In [2]: dot([1,2,3,4], [10,100,1000,10000])

 Out[2]: 43210.0

 In [3]: dot([5,3], [6])

 Out[3]: 0.0

Here are the tests to try:

Tests

print("dot([5,3], [6,4]) 42.0 ==", dot([5,3], [6,4]))

print("dot([1,2,3,4], [10,100,1000,10000]) 43210.0 ==", dot(

[1,2,3,4], [10,100,1000,10000]))

print("dot([5,3], [6]) 0.0 ==", dot([5,3], [6]))

print("dot([], [6]) 0.0 ==", dot([], [6]))

print("dot([], []) 0.0 ==", dot([], [6]))

• Function 3: Next, write ind(e, L). Here is its description:

Write ind(e, L), which takes in a sequence L and an element e. L might

be a string, or L might be a list.

https://www.cs.hmc.edu/twiki/bin/view/CS5/ClassExamples
https://www.cs.hmc.edu/twiki/bin/view/CS5/ClassExamples

Your function ind should return the index at which e is first found in L.

Counting begins at 0, as is usual with lists. If e is NOT an element of L,

then ind(e, L) should return the integer equal to len(L). You

may not use the built-in index function of Python. Here are a few

examples:
• In [1]: ind(42, [55, 77, 42, 12, 42, 100])

• Out[1]: 2

•

• In [2]: ind(42, list(range(0,100)))

• Out[2]: 42

•

• In [3]: ind('hi', ['hello', 42, True])

• Out[3]: 3

•

• In [4]: ind('hi', ['well', 'hi', 'there'])

• Out[4]: 1

•

• In [5]: ind('i', 'team')

• Out[5]: 4

•

• In [6]: ind(' ', 'outer exploration')

• Out[6]: 5

In this last example, the first input to ind is a string of a single space

character, not the empty string.

Hint: Just as you can check whether an element is in a sequence with

 if e in L:

you can also check whether an element is not in a sequence with

 if e not in L:

This latter syntax is useful for the ind function! As with dot, ind is

probably most similar - bot not identical - to leng from

the ClassExamples.

Here are the tests to try:

Tests

print("ind(42, [55, 77, 42, 12, 42, 100]) 2 ==", ind(42, [55, 77,

42, 12, 42, 100]))

https://www.cs.hmc.edu/twiki/bin/view/CS5/ClassExamples

print("ind(42, list(range(0,100))) 42 ==", ind(42,

list(range(0,100))))

print("ind('hi', ['hello', 42, True]) 3 ==", ind('hi', [

'hello', 42, True]))

print("ind('hi', ['well', 'hi', 'there']) 1 ==", ind('hi', [

'well', 'hi', 'there']))

print("ind('i', 'team') 4 ==", ind('i', 'team'))

print("ind(' ', 'outer exploration') 5 ==", ind(' ', 'outer

exploration'))

• Function 4: Next, write letterScore(let). (Watch for capitalization!)

Here is its description:

letterScore(let) should take as input a single-character string and

produce as output the value of that character as a scrabble tile. If the

input is not one of the letters from 'a' to 'z', the function should

return 0.

To write this function you will need to use this mapping of letters to
scores

What!? Do I have to write 25 or

26 if elif or else statements? No! Instead, use the in keyword:

In [1]: 'a' in 'this is a string including a'

Out[1]: True

In [2]: 'q' in 'this string does not have the the letter before r'

Out[2]: False

OK! ... but how does this help...?

Consider a conditional such as this:

if let in 'qz':

 return 10

One note: letterScore does not require recursion. But

recursion is used in the next one... .

Here are some examples of letterScore in action:

In [1]: letterScore('w')

Out[1]: 4

In [2]: letterScore('%')

Out[2]: 0

Tests? Write a few tests for this one yourself... it will also be tested
in conjunction with the next function!

• Function 5: Next, write scrabbleScore(S). (Again, watch for

capitalization!) Here is scrabbleScore's description: scrabbleScore(S

) should take as input a string S, which will have only lowercase

letters, and should return as output the scrabble score of that string.

Ignore the fact that, in reality, the availability of each letter tile is
limited. Hint: use the above letterScore function and recursion.

(Compare this with the the vwl example we did in class, but consider

adding different values for each letter. Here are the ClassExamples.

Here are some examples:

• In [1]: scrabbleScore('quetzal')

• Out[1]: 25

•

• In [2]: scrabbleScore('jonquil')

• Out[2]: 23

•

• In [3]: scrabbleScore('syzygy')

• Out[3]: 25

Here are the tests to try:

Tests

print("scrabbleScore('quetzal'): 25 ==", scrabbleScore('quetzal'))

print("scrabbleScore('jonquil'): 23 ==", scrabbleScore('jonquil'))

print("scrabbleScore('syzygy'): 25 ==", scrabbleScore('syzygy'))

print("scrabbleScore('abcdefghijklmnopqrstuvwxyz'): 87 ==",

scrabbleScore('abcdefghijklmnopqrstuvwxyz'))

print("scrabbleScore('?!@#$%^&*()'): 0 ==",

scrabbleScore('?!@#$%^&*()'))

print("scrabbleScore(''): 0 ==", scrabbleScore(''))

• Function 6: Finally, write transcribe(S). Here is its

description: transcribe(S)

https://www.cs.hmc.edu/twiki/bin/view/CS5/ClassExamples

DNA -> RNA transcription In an incredible molecular feat

called transcription, your cells create molecules of messenger RNA that
mirror the sequence of nucleotides in your DNA. The RNA is then used
to create proteins that do the work of the cell.

Write a recursive function transcribe(S), which should take as input a

string S, which will have DNA nucleotides (capital letter As, Cs, Gs,

and Ts).

There may be other characters, too, though they should be ignored by
your transcribe function by simply disappearing from the output. These

might be spaces or other characters that are not really DNA

nucleotides.

Then, transcribe should return as output the messenger RNA that

would be produced from that string S. The correct output simply uses

replacement:

o As in the input become Us in the output.

o Cs in the input become Gs in the output.

o Gs in the input become Cs in the output.

o Ts in the input become As in the output.

o any other input characters should disappear from the output
altogether

As with the previous problem, you will want a helper function that
converts one nucleotide. Feel free to use this as a start for this helper
function:

 def one_dna_to_rna(c):

 """ converts a single-character c from DNA

 nucleotide to complementary RNA nucleotide """

 if c == 'A': return 'U'

 # you'll need more here...

You'll want to adapt the vwl example, but adding together strings,

instead of numbers! Here are the ClassExamples.

Here are some examples of transcribe:

In [1]: transcribe('ACGT TGCA') # space should be removed

Out[1]: 'UGCAACGU'

In [2]: transcribe('GATTACA')

Out[2]: 'CUAAUGU'

http://en.wikipedia.org/wiki/Transcription_(genetics)
https://www.cs.hmc.edu/twiki/bin/view/CS5/ClassExamples

In [3]: transcribe('cs5') # lowercase doesn't count

Out[3]: ''

Not quite working? One common problem that can arise is
that one_dna_to_rna lacks an else case to capture all of the non-legal

characters. Since all non-nucleotide characters should be dropped, this
can be fixed by include code similar to this:

 else:

 return '' # return the empty string if it's not a legal

nucleotide

There are different ways around this, too, but this is one problem that
has appeared a few times... . Note that the else above is only

for one_dna_to_rna, not for transcribe itself.

Here are the tests to paste and try - note that the right-hand sides
won't have quotes:

Tests

print("transcribe('ACGTTGCA'): 'UGCAACGU' ==",

transcribe('ACGTTGCA'))

print("transcribe('ACG TGCA'): 'UGCACGU' ==", transcribe('ACGTGCA'))

note that the space disappears

print("transcribe('GATTACA'): 'CUAAUGU' ==", transcribe('GATTACA'))

print("transcribe('cs5') : '' ==", transcribe('cs5'))

note that the other characters disappear

print("transcribe('') : '' ==", transcribe(''))

Because Python prints strings without the enclosing quotes, the right-

hand sides won't have quotes, which means that you will want your
output to look like this:

transcribe('ACGTTGCA'): 'UGCAACGU' == UGCAACGU

transcribe('ACG TGCA'): 'UGCACGU' == UGCACGU

transcribe('GATTACA'): 'CUAAUGU' == CUAAUGU

transcribe('cs5') : '' ==

transcribe('') : '' ==

Submit!

Remember to submit your file as hw1pr3.py.

If it's not too late, you might check out the optional extra-credit problems,

described below.

Extra!

This week's extra-credit shows off a wonderful practice website for Python
functions, called !CodingBat. In addition, it offers a challenge "pig-latin"

function to write...

There are three opportunities (up to +4 pts each):

• practice with strings on CodingBat with Python strings

• practice with lists on CodingBat with Python lists
• write a pig-latin-izing function (more with strings...)

Extra #1: CodingBat for Python Strings

For +4 points, complete all of the Python string problems on CodingBat's
"String-1" Python string page. Use as many attempts as you'd like. We will

use the honor system here:

You'll receive +4 extra-credit points if

• you do complete all of those string problems successfully, and

• you paste at/near the bottom of your hw1pr3.py file this comment:
• #

• # I finished all of the CodingBat STRING problems.

• #

Extra #2: CodingBat for Python Lists

http://codingbat.com/python/
http://codingbat.com/python/String-1
http://codingbat.com/python/List-1
http://codingbat.com/python/String-1
http://codingbat.com/python/String-1

If you like the CodingBat practice-problem site, try some more! For +4
points, complete all of the Python list problems on CodingBat's "List-1"

Python list page. Use as many attempts as you'd like.

You'll receive +4 extra-credit points if

• you do complete all of those list problems successfully, and

• you paste at/near the bottom of your hw1pr3.py file this comment:
• #

• # I finished all of the CodingBat LIST problems.

• #

Extra #3: Pig Latin!

[up to another +4 points]

This problem asks you to write two functions that implement an Engligh-to-

Pig Latin translator.

Be sure to name and test your functions carefully. Include in each a

docstring, which should indicate what the function computes (outputs) and
what its inputs are or what they mean.

This problem is inspired by

• Warm up:

Write pigletLatin(s), which takes as input a string s. s will be a single word consisting of

lowercase letters. Then, pigletLatin should output the translation of s to "piglet latin," which

has these rules:

• If the input word has no letters at all (the empty string), your function should return the

empty string

http://codingbat.com/python/List-1
http://codingbat.com/python/List-1

• If the input word begins with a vowel, the piglet latin output simply appends the

string 'way' at the end. 'y' will be considered a consonant, and not a vowel, for this

problem.

Example: pigletLatin('one') returns 'oneway'

• If the input word begins with a consonant, the piglet latin output is identical to the input,

except that the input's initial consonant is at the end of the word instead of the beginning

and it's followed by the string 'ay'.

Example: pigletLatin('be') returns 'ebay'

• Of course, this is not full pig latin, because it does not handle words beginning with

multiple consonants correctly. For

example, pigletLatin('string') returns 'tringsay'.

You'll fix this next!

• The real pig latin challenge:

Create a function called pigLatin(s) that handles the rules above and hadles more than one

initial consonant correctly in the translation to Pig Latin. That is, pigLatin moves all of the

initial consonants to the end of the word before adding 'ay'. (You may want to write and use a

helper function to do this -- see the hint below.)

Also, pigLatin should handle an initial 'y' either as a consonant OR as a vowel, depending on

whether the y is followed by a vowel or consonant, respectively. For example, 'yes' has an

initial y acting as a consonant. The word 'yttrium', however, (element #39) has an

initial y acting as a vowel. Here are some additional examples:
In [1]: pigLatin('string')

Out[1]: ingstray

In [2]: pigLatin('yttrium')

Out[2]: yttriumway

In [3]: pigLatin('yoohoo')

Out[3]: oohooyay

Tests? These we're leaving up to you!

Hint!

One way to use recursion to assist in this is to write a function

def initial_consonants(s):

that returns a string of all of the initial consonants in the input string s. Thus, if s starts with a

vowel, the empty string '' will be returned.

If you think about this problem thoroughly, you'll find that not every possible case has been

accounted for - you are free to decide the appropriate course of action for those "corner cases."

We won't test these... .

Oodgay ucklay!

	Gold Problem 3: Fun with Functions
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/FunctionFrenzyGold on 3/20/2017
	[50 points; individual or pair]
	Starting your file: hw1pr3.py
	Use recursion!
	Visualize recursion!

	Test!
	The functions to write...

	Submit!
	Extra!
	Extra #1: CodingBat for Python Strings
	Extra #2: CodingBat for Python Lists
	Extra #3: Pig Latin!

