
Black Problem 3: Exceptional Encryption

Copied from:

https://www.cs.hmc.edu/twiki/bin/view/CS

5/ExceptionalEncryptionBlack on 3/15/2017

Starter file: hw9pr3.py.

In class, we have briefly mentioned the RSA algorithm, which is the most

commonly used approach to public-key encryption. The feature of public-key
encryption that makes it so widely used is that is asymmetric: the key that
encrypts is distinct from the one that decrypts. That allows one of the keys

to be published widely, while the other is kept secret. The RSA approach
(named after its inventors, Ron Rivest, Adi Shamir, and Len Adleman) is also
two-way: either key can encrypt while the other decrypts. The latter

property allows us to support digital signatures in addition to secret
messages.

In this assignment, you will implement a simple version of RSA encryption

yourself. The implementation won't be "industrial strength"; in fact, you'll
also develop a way to crack it. (Getting encryption exactly right
is really difficult, and for real applications you should always use software

written by a pro rather than trying to do it yourself. But this assignment will
help you understand both the RSA algorithm and how to attack it.)

Outline of the RSA Algorithm

The RSA method is based on modular exponentiation—i.e., taking a number
to a power modulo some other number. For example, you might encrypt the

message M by raising it to the power of 23, modulo 143:

encrypted = M**23 % 143

If M = 7, then 7**23 = 27368747340080916343, and 7**23 % 143 = 2.

Then we can decrypt it by raising 2 to the 47th power modulo 143:
In [1]: 2**47

Out[1]: 140737488355328

In [2]: 2**47 % 143

Out[2]: 7

As you might suspect, the trick to making this work lies in the selection of
the exponents and the modulus. Once you have those, Python will do the

https://www.cs.hmc.edu/twiki/bin/view/CS5/ExceptionalEncryptionBlack
https://www.cs.hmc.edu/twiki/bin/view/CS5/ExceptionalEncryptionBlack
http://www.cs.hmc.edu/~cs5grad/cs5/hw9pr3.py

hard part of the calculation for you, as above. (There are much faster ways
to do this exponentiation, but we won't attack those in this lab.)

Part I: Helper Functions

To make this lab work, you're going to need some helper functions. You'll

find it useful to write the following:

• isPrime(n) returns True if n is prime.

• nextPrime(n) returns the first prime that is greater than n. An easy way

to do that is to first ensure that n is odd, then keep adding 2 to it until

it becomes prime.
• gcd(a, b) returns the greatest common divisor of a and b, using

Euclid's algorithm: if a equals b, return a. Otherwise, if a is greater

than b, return gcd(a - b, b). Otherwise, return gcd(b, a).

Try these functions on the following test cases:

In [1]: isPrime(2)

Out[1]: True

In [2]: isPrime(17)

Out[2]: True

In [3]: isPrime(49)

Out[3]: False

In [4]: isPrime(101)

Out[4]: True

In [5]: nextPrime(2)

Out[5]: 3

In [6]: nextPrime(3)

Out[6]: 5

In [7]: nextPrime(121)

Out[7]: 127

In [8]: gcd(48, 60)

Out[8]: 12

In [9]: gcd(100, 49)

Out[9]: 1

You will also need a function to compute the multiplicative inverse of a
number in a modular field—that is, the number that, when multiplied by n,

gives 1 mod m. We have provided that function to you in the file hw9pr3.py.

Try it out:

In [1]: modularMultiplicativeInverse(2, 51)

Out[1]: 26

In [2]: modularMultiplicativeInverse(26, 51)

Out[2]: 2

Part II: chooseKey

We're now ready to write the guts of RSA encryption. The

function chooseKey will select three numbers: a decryption exponent d, an

encryption exponent e, and a modulus m. The encryption exponent and the

modulus will be published as the public key; the decryption exponent and

the modulus will be your private key. (Strictly speaking, either exponent can
be chosen to be the private key, and either can be used to encrypt, with the
other then serving to decrypt.)

chooseKey will accept a number indicating the approximate size of the desired

key, and will return a triple (d, e, m) where d is the decryption exponent, e is

the encryption exponent, and m is the modulus. For example:

In [1]: chooseKey(1000)

Out[1]: (237, 101, 391)

In [2]: chooseKey(1000)

Out[2]: (869, 101, 1739)

The steps for generating a key are as follows:

1. Choose two distinct random primes p and q, of approximately equal

size. Each should be selected from the range sqrt(n)/2, 3*sqrt(n)/2,

where n is the argument to chooseKey. This will ensure that the

eventual modulus (which is p*q) will be very roughly equal to n. (You

will find the randint function, provided by the randommodule, useful for

this purpose.)

IMPORTANT DETAIL: Be sure p and q are different. If they're the

same, choose the next larger prime for one of them.
2. Calculate the modulus, m, as p*q.

http://www.cs.hmc.edu/~cs5grad/cs5/hw9pr3.py

3. Calculate Euler's totient for m. Because p and q are prime, the totient

will be (p - 1) * (q - 1).

4. Choose a random number in the range (1, totient), such that gcd(e,
totient) = 1. This will be your encryption exponent, e. (Note that the

range excludes both 1 and the totient.)
5. Select d as the modular multiplicative inverse of e with respect to the

totient (i.e., d*e % totient should equal 1).

6. Return the triple (d, e, m).

IMPORTANT NOTE: when using chooseKey, always make sure that the

returned modulus is at least 256. Otherwise you won't be able to tell all the
ASCII characters apart, and you'll get garbled messages when you decrypt
them.

Also, be careful not to pass huge numbers to chooseKey, or you can overload

your computer so badly that you might need to reboot it.

Part III: Encryption and Decryption

Now it's time to write encrypt(message, key). This function accepts a string

(message) and an RSA encryption key consisting of an exponent and a

modulus (as a tuple). It will return a list of integers that represents the

encrypted version of the message. For example:

In [1]: encrypt('Hello, world', (101, 323))

[174, 169, 211, 211, 161, 74, 2, 272, 161, 190, 211, 291]

In [2]: encrypt('What is RSA**42?', (101, 253))

[186, 236, 251, 116, 219, 215, 115, 219, 192, 149, 76, 53, 53,

151, 39, 217]

It will be helpful to remember that the ord function will convert a character

into the corresponding integer.

Decryption is essentially identical: decrypt(L, key) accepts a list of encrypted

numbers and returns the decryption of same. For example:

In [1]: decrypt([174, 169, 211, 211, 161, 74, 2, 272, 161, 190,

211, 291], (77, 323))

Out[1]: 'Hello, world'

In [2]: decrypt([149, 244, 251, 10], (61, 253))

Out[2]: 'Spam'

Remember that the chr function will convert an integer back into a

character.

Test your encryption and decryption functions with several different strings
and different keys. Here's an example of an easy way to test:

In [1]: key = chooseKey(256)

In [2]: key

Out[2]: (237, 101, 391)

In [3]: secret = encrypt('This is a test', (key[1], key[2]))

In [4]: decrypt(secret, (key[0], key[2]))

Out[4]: 'This is a test'

Attacking an Encryption Algorithm

Sometimes, it's useful to be able to uncover the key of an encrypted

message—usually one sent by one of your adversaries. There are two
common attacks on cryptosystems: known plaintext and unknown plaintext.
In the first attack, you have somehow acquired a copy of an unencrypted

message (the "plaintext") and its encrypted equivalent. The problem is to
recover the key that was used to encrypt the message (or, in a public-key
cryptosystem, whichever key is unknown). Once you have that, you can

read all future messages as well.

In the second attack, on the other hand, all you have is the secret message.
If you can recover the key(s), you'll be able to read that message as well as

future ones. Usually, an unknown-plaintext attack is more difficult.

The simplest way (in terms of programming) to figure out the key to a
cryptosystem is "brute force": try all possible keys until you find one that

works. A cryptosystem is considered strong if brute force is the best known
way to attack it.

We'll write a brute-force known-plaintext decrypter, cleverly

named bruteForceKnownPlaintext. It will take three arguments: the plaintext

string, the encrypted message (as a list), and the publicly known modulus. It
will try all possible keys in the range [2, modulus) and return one that

produces the given plaintext, or None if there is no such key.

There is one tricky detail we'll have to deal with: when you try to decrypt a
message with the wrong key, you may get a nonstandard character returned

by the chrfunction. For example:

In [1]: chr(61)

Out[1]: '='

In [2]: chr(259)

Out[2]: ă

Notice that the return is a nonstandard character, and that you can
reasonably assume that the plaintext only includes normal characters. You'll
need to use a try...except clause to catch this and deal with it appropriately

(we suggest returning None, which is the Python convention for "This is not a

valid result.").

You will find that finding a key by brute force is only practical for relatively

small key sizes (i.e., small arguments to chooseKey). That's the whole point:

if you use a big enough key, it will be impossible to find it by brute force
even with an unimaginably powerful supercomputer. Of course, there are

other forms of brute force…

Double Bonus: Unknown-Plaintext Decryption

For 10 further bonus points, write another function named bruteForce, which

will return a list of all keys that can correctly decrypt a message, given the
modulus. Here's an example:

In [1]: bruteForce([149, 244, 251, 10], 253)

Out[1]: [15, 27, 61, 125, 137, 171, 235, 247]

Note that not all of the keys above are correct; for example, decrypting with

15 gives garbage. That's because we used such a short message; brute-
forcing a longer one would give a shorter list.

How do you know you've successfully decrypted an unknown message? One

way is to assume that it's plain text—i.e., that it only contains valid ASCII
characters. You can test a given character for ASCII by including this code at
the top of your file:

import string

def isprint(c):

 """ returns True if c is printable;

 False otherwise

http://xkcd.com/538
http://xkcd.com/538

 """

 return c in string.printable

With this code in place, isprint(c) will return True if c is a valid printing

character (including spaces and newlines). If your entire decrypted string is
valid, you might have a good decryption!

One last thing that it's good to know is that you can test a variable to see
whether it is (or isn't) None. Although normal comparison for equality works

just fine, Python offers another way that is preferred in this case:

 if x is None:

 print("x is None")

 if x is not None:

 print("x isn't None")

Why You Shouldn't Use This to Encrypt Your

Banking Transactions

As mentioned earlier, the code you've written here is not of industrial

strength. Hopefully not, if you can use a brute force algorithm to reliably
decrypt it! One of the problems that an enterprising student may notice in
the above examples is that the same letters map to the same numbers,

making this a monoalphabetic cipher. For example:

encrypt('Hello, world', (101, 323))

[174, 169, 211, 211, 161, 74, 2, 272, 161, 190, 211, 291]

Note that both "l"s are represented by 211. Monoalphabetic ciphers are
among the weakest forms of encryption, as they can be easily broken with
frequency analysis. Polyalphabetic ciphers, in which the same letter can and

will map to different outputs, are much more secure. Both polyalphabetic
and monoalphabetic ciphers, however, are substitution ciphers. (The Enigma
Device was also a substitution device! Albeit a very complex one...) RSA,

however, is not.

From Ask A Mathematician:

"If your messages were 'Hello A', 'Hello B', and 'Hello C', then a substitution
cypher might produce 'Tjvvw L', 'Tjvvw C', and 'Tjvvw S' while RSA (the
most common modern encryption) might produce 'idkrn7shd', '62hmcpgue',

and 'nchhd8pdq'. In the first case you can tell that the messages are nearly
the same, but in the second you got nothing."

https://en.wikipedia.org/wiki/Substitution_cipher
http://www.askamathematician.com/2014/12/q-how-good-is-the-enigma-code-system-compared-to-todays-publicly-available-cryptography-systems/

The real implementation of RSA encryption first converts your text (a string)
into a bunch of bits (1's and 0's) and then converts those bits into a (usually

somewhat large) number. This number (an integer, not a list of numbers like
what you've implemented) is then taken to a power and then modulo some
number, and effectively avoids the substitution problem. If this sounds

interesting to you, there are some great explanations of the
topic here and here (Warning: heavy math ahead!) If simulations are more
your thing, you might like an Enigma Device simulator or an RSA simulator.

-- GeoffKuenning - 04 Nov 2013

http://doctrina.org/How-RSA-Works-With-Examples.html
http://www.askamathematician.com/2012/03/q-how-do-you-write-algorithms-to-enycrypt-things/
http://enigmaco.de/enigma/enigma.html
http://shop-js.sourceforge.net/crypto2.htm

	Black Problem 3: Exceptional Encryption
	Copied from: https://www.cs.hmc.edu/twiki/bin/view/CS5/ExceptionalEncryptionBlack on 3/15/2017
	Outline of the RSA Algorithm
	Part I: Helper Functions
	Part II: chooseKey
	Part III: Encryption and Decryption
	Attacking an Encryption Algorithm
	Double Bonus: Unknown-Plaintext Decryption
	Why You Shouldn't Use This to Encrypt Your Banking Transactions

