
Domineering

Your name:

By the time you are done with this activity, you should be able to:

• use multidimensional arrays.

• develop a simple graphic user interface (GUI).

• write individual methods, manually testing each one.

After you complete this activity, please fill out the short survey at

http://goo.gl/forms/HXjyuUb2ou

to improve this project for future users.

Playing the Game

Included in the Domineering project is a file Domineering.jar. This is a compiled version of the
working game. To play it, use a terminal to navigate to the directory containing the file and type
this on the command line:

java -jar Domineering.jar

This is a two-player game. Play once or twice with another student so that you understand the
rules.

Program Structure

You have been given an incomplete skeleton file Domineering.java. Your job is to complete the
program so that it behaves exactly like Domineering.jar. As a slight bit of creative freedom, you
may change the displayed colors. If you do so, choose an aesthetically pleasing palette and keep
in mind that some users cannot distinguish, e.g., red from green.

Take notes as you work. What bugs and conceptual difficulties did you encounter? How did you
overcome them? What did you learn?

The program is broken up into seven methods. The diagram below shows which methods call
which other methods. For example, main calls gameOver, which in turn calls isLegal.

isLegal

draw

oppositeplace
Domino

main

gameOver handle
MouseClick

This diagram helps us determine which methods to write first. For example, we won’t be able to
get handleMouseClick to work properly until isLegal, placeDomino, and opposite
are working. We should complete the methods in an order that will avoid any arrows pointing
from earlier methods to later ones. Here’s one reasonable solution:

isLegal

draw

opposite

place
Domino

main

gameOver

handle
MouseClick

opposite

This is a very simple method. Read the Javadoc comment at the top of the method and
implement it. (Hint: if you’re clever, you can do it without an if statement.)

Before you start, you will want to delete the line

return false;

That line is just there temporarily because a method with a return type of boolean would not
compile if it was empty.

Before moving on to the next method, you want to be confident that this method is working
correctly. Perhaps you can tell that it’s correct just by looking at it, but even experienced
programmers occasionally make mistakes this way. It’s better to test the method by running it.

Add this line in the main method:

StdOut.println(opposite(true));

What is printed in the console when you run the program? Is it what you expected? How will you
test that opposite(false) returns the correct value?

Testing may seem like unnecessary work, especially for such a simple method. Sooner or later,
though, you’re going to run into a bug. If you’ve thoroughly tested all of your previous methods,
you’ll have confidence that the bug is somewhere in the method you just wrote. This vastly
reduces the amount of time you’ll have to spend debugging.

placeDomino

This method is also relatively simple. To avoid any need for conversion this program uses x, y
coordinates throughout.

To test this method, you might put code like this in main:

boolean[][] board = new boolean[8][8];
placeDomino(1, 2, board, false);
StdOut.println(board[1][2]);
StdOut.println(board[2][2]);
StdOut.println(board[3][2]);
StdOut.println(board[1][3]);

Before running the modified program, write down the values you expect it to print. Doing this
first forces you to consider how the program is supposed to behave and not simply accept
whatever values it prints.

This domino was placed horizontally. How will you test the placement of a vertical domino?

Don’t forget to remove the testing code when you’re done. Otherwise, the game will start with a
domino already on the board!

isLegal

This method is slightly more complex, especially when it comes time to test it. In writing the
method itself, the Boolean operators &&, ||, and ! may come in handy.

You may want to use placeDomino in your testing. Be sure that your tests include:

• A case where the placement is legal.

• A case where square x, y is occupied by a previous domino.

• Cases where the second square of the domino overlaps a previous domino. Test this for both
vertical and horizontal placement.

• Cases where the second square of the domino is off the board. Test this for both vertical and
horizontal placement.

gameOver

Can you see how calling one of your previous methods would make this easier to write?

How will you test this method?

draw

Use the draw method from TicTacToe.java (in the Tic-Tac-Toe project) as a template. Start with

StdDraw.clear();

and end with:

StdDraw.show(0);

The expression (x + y) % 2 will be useful in determining which color to draw each square
of the board. Figure out the value of this expression for several similar values of x and y to see
why.

To test this one, call it in the main method. Does it look right? What if you place some
dominoes before drawing?

handleMouseClick

Recall from the earlier diagram that this method calls isLegal, placeDomino, and
opposite.

You can use the version from TicTacToe.java as a template, but notice a subtle difference. In that
game, trying to make an illegal move resulted in passing (not playing). Passing would never be

beneficial in Tic-Tac-Toe, but it would be in Domineering. The handleMouseClick method
in Domineering.java therefore has the added responsibility of returning a boolean indicating
whose turn it is next: the opposite player in case of a successful move, the same player in case of
an attempted illegal move.

A method like this that depends on user input is difficult to test without having the entire
program running. That’s why we’ve done no user input in other methods and saved this method
for close to the end.

Having written it (and hoping it works right), we can move on to the last method!

main

Again, you can use the version from TicTacToe.java as a template.

The graphic scale should be from -1.5 to 8.5.

Be sure to update the local variable verticalToPlay with the result of a call to
handleMouseClick:

verticalToPlay = handleMouseClick(board, verticalToPlay);

Now it’s time to test out the whole program by playing the game!

Did you find that debugging when faster when you broke the program down into methods and
tested each method as you went?

After you’re done, please fill out the survey at http://goo.gl/forms/HXjyuUb2ou.

	Playing the Game
	Program Structure
	opposite
	placeDomino
	isLegal
	gameOver
	draw
	handleMouseClick
	main

