
Decision Trees for Text Classification in CS2
Kevin Lin

Paul G. Allen School of Computer Science & Engineering
University of Washington

Seattle, WA, USA
kevinl@cs.uw.edu

Course Data Structures

Programming Language Java

Resource Type Assignment

CS Concepts Non-self-balancing binary trees

Knowledge Unit Programming Concepts

Creative Commons License CC BY

SYNOPSIS
In CS2 courses centering programming with recursion and data structures,
binary trees can be used to represent hierarchical relationships between
data. Drawing on a machine learning context, this assignment presents an
application of binary trees toward text classification that demonstrates how
the design of programming abstractions shapes social outcomes. By the end
of this assignment, students will not only be able to define methods that
recursively construct, traverse, and modify binary trees, but also begin to
engage with ethical questions around the design and use of sociotechnical
text classification systems.

ACM Reference Format:
Kevin Lin. June 2022. Decision Trees for Text Classification in CS2. In
EngageCSEdu.ACM, New York, NY, USA 2 pages. https://doi.org/10.1145/
3519938

KEYWORDS
data structures, binary trees, binary search trees, recursion, mutation

1 ENGAGEMENT HIGHLIGHTS
In natural language processing, text classification is the problem of as-
signing the correct label to a sentence or document. Text classification
algorithms are commonly used in a variety of real-world contexts involving
large amounts of user-generated text data, such as classifying spam emails,
analyzing user sentiment, and identifying toxic social media comments.
Each real-world example is embedded in social definitions of language,
so the assignment frames text classification algorithms as sociotechnical
systems that encode ideas about how the world should work by making
normative judgments about language. While the programming tasks for
this assignment are only slightly different from the binary tree practice
problems that students solve in class, the social applications draw attention
to the way that ideas about language can be encoded within binary deci-
sions. Students are tasked to implement 4 binary tree methods that form
the data structure foundations of a decision tree machine learning model.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EngageCSEdu, Open Educational Resources, Virtual
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9430-7/22/06.
https://doi.org/10.1145/3519938

These contexts are personally-relevant to students not only because
students directly or indirectly participate in social media, but also because
the assignment raises important questions regarding the consequences of
the design and deployment of text classification systems. Every platform
must moderate user-generated content in one way or another, but their
decisions how moderation is carried out has social consequences. While the
machine learning concepts are abstracted-away, this assignments creates
opportunities for instructors to raise ethical questions through discussing
the limits of binary logic for algorithmic decisionmaking and the social
relationships that text classification algorithms reinforce.

• How might the use of binary decisions and the binary return value
shape how users experience the text classification algorithm?

• What ideas about language can be encoded by a model that only
makes binary decisions based on the presence or absence of a word?

• When enforced by algorithms, how do ideas about language affect
people by race, gender, sexuality, class, and their intersections?

• As the complexity or depth of a decision tree model increases, how
are these issues differently mitigated and/or exacerbated?

• If the data includes problematic ideas, what is the model’s responsi-
bility to counteract problems? What is our criteria for success?

Just as cutting-edge machine learning models can learn to generate
racist, sexist, and homophobic text without explicit instruction, decision
tree models can also learn problematic ideas about the world from its data.
For these reasons and many others, decision tree models are not commonly
used in practice today. But it’s also precisely in these ethical questions
and problems that decision trees offer a compelling context for exploring
the intersection of technology and society. By developing students’ ethical
reasoning in introductory programming—in spaces traditionally devoid of
critical counternarratives—we might also begin changing the culture of
computing away from one that views technology and society as separate
and toward one that views technology and society as deeply interrelated.

2 RECOMMENDATIONS
This assignment is designed to take between 4 to 8 hours after 3 or 4 prior
programming lessons on recursive methods involving binary trees. In our
course, students will have written 12 recursive binary tree methods that
practice all the relevant concepts in general. Without this background, stu-
dents might feel overwhelmed by the interfaces and classes. This assignment
is designed as a culminating experience for assessing student proficiency
with writing recursive binary tree methods in context with new interfaces
and classes that students have not seen before. For each of the 3 learning
objectives, we recommend students know how to solve analogous versions
using more familiar classes.

Construction Students can define a method readTree(Scanner in)
that constructs a binary tree from a formatted instructions text file.

Traversal Students can define several methods that traverse a tree
and conditionally print-out or modify tree values.

Modification Students can define a method tighten() that com-
presses a tree by removing single-child branches and promoting
their 0/2-child descendants.

Developing components for a machine learning model can be daunting,
so it’s important to discuss the relationship between programming concepts

https://doi.org/10.1145/3519938
https://doi.org/10.1145/3519938
https://doi.org/10.1145/3519938


and the decision tree model especially if students are not yet comfortable
using libraries and code that they did not personally develop. A high-level
overview in class that emphasizes the programming task and how all the
pieces fit together can be helpful, but even then expect to answer questions
about the relationship between scaffold code and the programming tasks.
These relationships can also be addressed in advance by posing them to
students as questions during class or in the specification. For example, we
might ask students to describe how different interfaces and classes will be
used for each method and check that their understanding is correct before
moving on to programming.

3 MATERIALS
All materials in this assignment are open source. The easiest way to acquire
the materials is to download the zip archive from the website. To create the
materials from source, clone the repository1 and run make (or reproduce
the commands listed in the Makefile).

An instructor guide is provided in the form of the README.md, instructor-
guide.docx, and index.html. All three of these files contain the same exact
content but in different formats depending on your preference. To create
student-facing instructions, refer to the instructor guide for more details.

Students are only expected to read and write program code in TextClas-
sifier.java; all other files contain information that is not strictly required for
the assignment. As noted in the instructor guide, students have a choice of
different training datasets (in addition to creating their own).

spam.tsv Labeled spam (or not-spam) message dataset.
toxic.tsv Labeled toxic (or not-toxic) comment dataset.
tiny.tsv A subset of 10 examples from toxic.tsv for testing.

Integration tests for each dataset is provided in the TextClassifierTest.java
class. However, we encourage instructors to develop further support mech-
anisms for students working on the assignment. Students will struggle if
support is only provided through the integration tests because they are
relatively difficult to use for debugging.

Implementation of the TextClassifier class relies on the Splitter
interface and Vectorizer class. Students are not expected to understand
the implementations of these files.

Splitter.java Divides the given data points into left and right.
GiniSplitter.java A strategy for splitting using information gain.
TestSplitter.java A strategy for splitting suitable for testing.

Vectorizer.java Transforms documents into numbers for the Splitter.
We also include a simple web app for a more authentic way to experience

the text classifier. Instructions for running the web app are described in the
instructor guide.

Server.java Runnable web app server.
index.html Web app frontend hosted by the server.

1https://github.com/kevinlin1/text-classifier
2

https://github.com/kevinlin1/text-classifier

	Abstract
	1 Engagement Highlights
	2 Recommendations
	3 Materials

