
Conditions and Logic
Computer programs make decisions based on logic: if some condition applies, do something,
otherwise, do something else.

Content Learning Objectives

After completing this activity, students should be able to:

• Evaluate boolean expressions with comparison operators (<, >, <=, >=, ==, !=).

• Explain the syntax and meaning of if/else statements and indented blocks.

• Evaluate boolean expressions that involve comparisons with and, or, and not.

Process Skill Goals

During the activity, students should make progress toward:

• Evaluating complex logic expressions based on operator precedence. (Critical Thinking)

Facilitation Notes

Model 1 is quick and straightforward; you may not need to report out at all. Just keep an eye
on each team’s responses and give individual help as needed.

On Model 2, have teams share their answer for #9. Ask other teams if they tried additional
experiments in the Python Shell to figure out the indenting rules of Python. You may want to
demonstrate (on the projector) what happens if you forget the colon. It might also be helpful to
show an if-statement with more than one line in the body.

During Model 3, explain that the variables p and q are often used to represent logic values
in discrete math. Explain that “not” is a unary operator, and that “and” and “or” are binary
operators. Double check each team’s truth table before they complete the remaining questions.

Have each team write their answers to #24 and #25 on the board. Ideally you will have a
variety of solutions, some of which are logically equivalent. Discuss the correct solutions to
these questions, and reinforce intuition about logic.

As a wrap-up discussion, step through the last print statement of Model 3 using a debugger.
Have the students check their work as you demonstrate the order of operations and the result
of each expression.

Copyright © 2019 C. Mayfield, T. Shepherd, and H. Hu. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Model 1 Comparison Operators

In Python, a comparison (e.g., 100 < 200) will yield a Boolean value of either True or False.
Most data types (including int, float, str, list, and tuple) can be compared using the fol-
lowing operators:

Operator Meaning

< less than

<= less than or equal

> greater than

>= greater than or equal

== equal

!= not equal

Type the following code, one line at a time, into a Python Shell. Record the output for each line
(if any) in the second column.

Python code Shell output

type(True) <class ’bool’>

type(true) NameError

type(3 < 4) <class ’bool’>

print(3 < 4) True

three = 3

four = 4

print(three == four) False

check = three > four

print(check) False

type(check) <class ’bool’>

print(three = four) TypeError

three = four

print(three == four) True

Questions (10 min) Start time:

1. What is the name of the data type for Boolean values? bool



2. Do the words True and False need to be capitalized? Explain how you know.

Yes, because type(true) resulted in NameError: name ’true’ is not defined.

3. For each of the following terms, identify examples from the table in Model 1:

a) Boolean variables: check

b) Boolean operators: <, ==, >

c) Boolean expressions: 3 < 4, three == four, three > four

4. Explain why the same expression three == four had two different results.

The two variables were initially different values, so the first comparison was False. But later
on, the value of four was assigned to three, so the second comparison was True.

5. What is the difference between the = operator and the == operator?

The = operator assigns a value to a variable, and the == operator compares two values.

6. Write a Boolean expression that uses the != operator and evaluates to False.

5 != 5

Model 2 if/else Statements

An if statement makes it possible to control what code will be executed in a program, based
on a condition. For example:

number = int(input("Enter an integer: "))

if number < 0:

print(number, "is negative")

else:

print(number, "is a fine number")

print("Until next time...")

Python uses indentation to define the structure of programs.
The line indented under the if statement is executed only when
number < 0 is True. Likewise, the line indented under the else

statement is executed only when number < 0 is False. The
flowchart on the right illustrates this behavior.



Questions (15 min) Start time:

7. What is the Boolean expression in Model 2?

number < 0

8. Enter this short program into a Python Editor. What is the output when the user enters the
number 5? What is the output when the user enters the number -5?

5 is a fine number -5 is negative

Until next time... Until next time...

9. After an if-condition, what syntax differentiates between (1) statements that are executed
based on the condition and (2) statements that are always executed?

The indentation; statements that are indented under the if are based on the condition, and
statements indented at the same level (later in the program) are always executed.

10. Enter the line print("Hello") into a Python Editor (where is a space), save the file
as hello.py, and run the program. What happens if you indent code inconsistently?

SyntaxError: unexpected indent

11. Based on the program in Model 2, what must each line preceding an indented block of code
end with?

A colon.

12. Write an if statement that first determines whether number is even or odd, and then prints
the message "(number) is even" or "(number) is odd". (Hint: use the % operator.)

if number % 2 == 0:

print(number, "is even")

else:

print(number, "is odd")

13. Does an if statement always need to be followed by an else statement? Why or why not?
Give an example.

No; you can have an if statement without an else. For example, you could determine that a
number is even and print a message, without printing a different message if it’s odd.



Model 3 Boolean Operations

Expressions may include Boolean operators to implement basic logic. If all three operators
appear in the same expression, Python will evaluate not first, then and, and finally or. If there
are multiple of the same operator, they are evaluated from left to right.

Do not type anything yet! Read the questions first!

Python code Predicted output Actual output

print(a < b and b < c) True

print(a < b or b < c) True

print(a < b and b > c) False

print(a < b or b > c) True

print(not a < b) False

print(a > b or not a > c and b > c) False

Questions (20 min) Start time:

14. What data type is the result of a < b? What data type is the result of a < b and b < c?

The type of each is bool; both are Boolean expressions.

15. Predict the output of each print statement, based on the variables a = 3, b = 4, and c = 5.
Then execute each line in a Python Shell to check your work.

16. Based on the variables in #15, what is the value of a < b? What is the value of b < c?

They are both true.

17. If two True Boolean expressions are combined using the and operator, what is the resulting
Boolean value?

True and True is True.

18. Using the variables defined in #15, write an expression that will combine two False Boolean
expressions using the or operator. Check your work using a Python Shell.

a > b or a > c



19. Assuming P and Q each represent a Boolean expression that evaluates to the Boolean value
indicated, complete the following table. Compare your team’s answers with another team’s,
and resolve any inconsistencies.

P Q P and Q P or Q

False False False False

False True False True

True False False True

True True True True

20. Assume that two Boolean expressions are combined using the and operator. If the value
of the first expression is False, is it necessary to determine the value of the second expression?
Explain why or why not.

It is unnecessary, because “false and anything” is false.

21. Assume that two Boolean expressions are combined using the or operator. If the value
of the first expression is True, is it necessary to determine the value of the second expression?
Explain why or why not.

It is unnecessary, because “true or anything” is true.

22. Examine the last row of the table in #15. Evaluate the Boolean expression following the
order of precedence rules explained in Model 3. Show your work by rewriting the line at each
step and replacing portions with either True or False.

a > b or not a > c and b > c

False or not a > c and b > c

False or not False and b > c

False or True and b > c

False or True and False

False or False

False

23. Suppose you wanted to execute the statement sum = x + y only when both x and y are
positive. Determine the appropriate operators, and write a single Boolean expression for the
if-condition.

x > 0 and y > 0



24. Rewrite the expression from #23 using the not operator. Your answer should yield the same
result as in #23, not the opposite. Describe in words what the new expression means.

not (x <= 0 or y <= 0)
In other words, “both x and y are positive” is equivalent to “neither x nor y is negative/zero”.

25. Suppose that your team needs to execute the statement sum = x + y except when both x

and y are positive. Write a Boolean expression for this condition. How is it different from the
previous question?

not (x > 0 and y > 0)
To represent “except when” logic, we simply negate the original condition. The previous
question negated each of the operators as well, which is known as De Morgan’s law.


	Comparison Operators
	[style=morepython]if/[style=morepython]else Statements
	Boolean Operations

