
CSC 236 Data Structures

L02: Backtracking and Caves

Objectives

 Gain practice in using stacks

 Use a stack made of a composite data type

 Learn about backtracking

 More practice in creating and using nested lists

Backtracking

A very important use of the stack data structure is in backtracking, a process by
which one investigates an option for solving a problem and then abandons it for
another option when it does not lead to a solution. An intuitive to explain this
process is with hiking.
Suppose you are hiking in the woods where there are many paths to follow and
are trying to reach a specific campsite to meet with some friends. There are

many paths to take where one or two can lead to the campsite, whereas others
will take to around the mountain to some other part of the woods. At each
intersection, therefore, you must make a choice which path to follow. For
example, if the path forks, do you go to the left or right? If there is a four-way
intersection, do you go left, right or straight?

Suppose you picked a sequence of turns and end up at a cliff, where there is a
great view, but it is not the campsite.

What do you do? Well, a typical and intuitive response would be to go back to
where you most recently had to choose a direction, and select a different path
with the hopes that this time, it will work. If none of the alternatives led to the
campsite, then you have to back even further to the second to last intersection
and try those alternatives. If none of those alternatives work either, then you
have to back one more intersection. Now, if you end up back at your starting
point and have not found the campsite, you will probably need to call your friends
to check to make sure you are at the correct park (assuming you and your
friends have cell phone reception).

Note that as you go back and try all the paths, you need to keep track of what
you had done before so you do not repeat mistakes (hence called
"backtracking"). The intuitive way to store these alternatives is in a LIFO manner
because when a choice did not work, the alternatives to test are at the
intersection you had most recently encountered.

Another example of using backtracking can be demonstrated by the problem of
finding treasure in a cave. If there was only one way through the cave, that would
not be a challenge (people who place treasures would not make finding them
that easy). Instead, there are various intersections of paths, and a treasure
hunter must choose one to follow. It is entirely possible that the chosen path will
lead to a "dead end", meaning that (1) there is no way to go any further, and (2)
there is no treasure found yet. In these situations, one can return back to the last
point at which a choice was made, and select an alternative that will hopefully
lead to the treasure.

What do caves, maps, and backtracking have to with
this lab?
You are work on this lab with a partner or individually. If you decide to work with
a partner, be sure to follow good "pair-programming" practices as you did for
CSC226.

Your task is to write a program that starts with an initial starting point and a map

http://cs.berea.edu/courses/csc226/CSC226PairProgram.pdf

of a cave. It then finds as much loot in the cave as possible by exploring all the
accessible locations. Every time you encounter treasure, your program will
output the path you took from the starting point to the loot. Every time you reach
a dead-end, you will retrace your steps and try another of the untried paths until
you return back to your starting point having explored all the paths accessible to
you. Once the program has explored all accessible spots on the map, it stops.

In this lab, choosing an appropriate algorithm and set of data structures will
prove crucial to how difficult the lab will be.

Details

1. No matter where you are in the cave, you can only travel in one of the four cardinal
directions, north, south, east and west:

 N

W me E
 S

2. Because the position on the map is a location (row, column), you should use a
compound data structure to represent this position. For example you might
consider using a tuple (row, col) or you might consider using a small class:
3. def pos:
4. self.rol # Which "ROW" is this position?

 self.col # Which "COLUMN" is this position?

You can choose the data structure which makes sense.

5. When you have multiple path options, it could simplify your algorithm if you always
try the available paths in exactly the same order (such as always first look to the
north, then to the west, then to the south, and finally to the east).

6. The maps have paths marked by a '.', walls marked by a 'W', treasure marked by a

'T', and your position is marked by a 'M'.
For example, a layout of a cave map at a particular point in time while your program
is exploring it may look like the following:

W W W W W W W W W W W W

W W W . . . W W W . W W

W W W W . W W

W W . W . W W W . . . W

W W . . W . . W W W . W

W W W . W W W . W W . W

W T W . W W . W

W W W W M W W W W . . W

W W W W . . W W W . . W

W . T W . W W W W . W W

W . W W . W W W W . . W

W . W W . W W W . W . W

W . W W W W W W

W . . W W . . W . W W W

W W W W W

W W W W W W W W W W W W

7. The outside edges of the map will have only walls; i.e. it will not have paths. Note
that it will be particularly important for you to think about what compound data
structure you will use for this rectangular set of data. Be sure to think about
whether you will want it to be mutable or immutable.

8. The cave map file:

1. Your program will ask from the user the name of the file that contains the cave
map it will explore, but that is the only input the program will ask from the user.

2. The dimensions will be on the first line of the file as a pair of numbers, the first
for the number of rows and the second the number of columns.

3. The layout of the map read from the file is rectangular, where there is one row
per line where each position has no spaces between other positions.
The map above will look like this:

16 12

WWWWWWWWWWWW

WWW...WWW.WW

WW.....WW.WW

WW.W.WWW...W

WW..W..WWW.W

WWW.WWW.WW.W

WT....W.WW.W

WWWWMWWWW..W

WWWW..WWW..W

W.TW.WWWW.WW

W.WW.WWWW..W

W.WW.WWW.W.W

W.WWWWW....W

W..WW..W.WWW

WW.......WWW

WWWWWWWWWWWW

4. The starting position is indicated by the 'M'---you may assume that there is only
one 'M' in the cave.

5. Here is a sample test file: cave_sample.txt You are expected to create at
least three additional map files which test boundary conditions.

Suggestions and Assumptions

 It is much more fun to watch your program run if it displays the map on the screen
after each move.

 It is not a good idea to assume that there is only one position where there is
treasure, or that if there is treasure, it is accessible. In other words, maps can be
configured in which you return empty handed or loaded with treasure found in
multiple spots in the cave map.

http://cs.berea.edu/courses/csc236/tasks/cave_sample.txt

 You must use backtracking and you must effectively use a stack for the
backtracking.

 For each treasure you find, you must display the path to that location, which can be
implemented as a stack.
Give some thought to how to do this display well.

Design to Implementation

It is recommended that you first start with a clear idea of what the problem you
are trying to solve is and an outline of your solution in enough detail so that
someone else can implement it for you in any language. Note that you should
use English and not programming language specific statements (like Python
code).

Do NOT try to implement anything yet.

In the reflection document (explained below), you will include this design as a
response to the first prompt.

Once the general solution design is done, you can start to fill out some more
details. By breaking the problem into pieces, you can design functions (that
encapsulate specific operations) with details clearly explaining how they will
solve each of the smaller pieces. You should specify the input each function
gets, what it produces or outputs, and a rough outline (NOT CODE!) of what you
want it to do.

Once you have finished with the design, you can start to implement each
function, test it with known inputs and outputs, and start to build your complete
program piece by piece.

Reflection

You are work with a partner for this lab or individually.
If you decide to work with a partner, be sure to follow good "pair-programming"
practices as you did for CSC226.

Answer the following questions in yourusername(s)-L01-reflection.docx:
 AUTHORSHIP: Describe who did the work on this lab. If you worked as a pair, did

you use good pair-programming practices? Explain.

 INITIAL DESIGN PLAN: What is a pseudocode design plan which meets the
computational requirements of this lab?

 SUMMARY: A brief summary description of the design and implementation,
including how much your initial design plan evolved, the final result you achieved
and the amount of time you spent as a programmer in accomplishing these results.
This should be no more than two paragraphs.

http://cs.berea.edu/courses/csc226/CSC226PairProgram.pdf

 IMPLEMENTATION: A list in bullet form of specifically what was accomplished
including any challenges overcome and innovations that were not specifically
required by the assignment.

 TESTING: A list in bulleted form of all input values used for testing. Here you
should be careful to select representative input cases, including both representative
typical cases as well as extreme cases.

 FILES: A list in bulleted form of the names of all files submitted (source code and
input, etc.)

 ERRORS: A list in bulleted form of all known errors and deficiencies.

 COMMENTS: A paragraph or so of your own comments on and reactions to the
Lab.

 BIG-O: What is the big-O analysis of the method (or methods) which do the
backtracking?

On L02: Documenting, saving, and submitting your files

To submit:

1. Create a folder called yourusername-csc236L02
2. Copy your program files into it. (all classes in addition to the driver file and three or

more test maps you have created)

3. Complete your reflection yourusername-reflectionL02.docx and copy into this
folder.

4. Zip this directory and submit your zipfile, yourusername-L02.zip, onto Moodle when
you are done.

Copyright © 2016 | Licensed under a Creative Commons Attribution-Share Alike 3.0 United States License | http://cs.berea.edu/CSC236/

