
“Air Quality Index Calculator” by Mark Gondree is licensed under CC BY-NC. Accessed from www.engage-
csedu.org.

CS 115: Project 1
Air Quality Index Calculator

Goals
In this project, you will make a calculator that determines the Air
Quality Index (AQI) from sensor data, following methods
published by the US Environmental Protection Agency (EPA).

You will be practicing the following concepts from prior labs:

• for-loops

• conditionals
• math calculations
• accumulator pattern
• min/max/avg calculations
• non-trivial print statements

Summary
The Air Quality Index (AQI) is a simple, unitless index used to communicate air pollution to the
general public. EPA's AirNow website shows interactive maps with the current AQI, as well as AQI
forecasts.

https://www.engage-csedu.org/
https://www.engage-csedu.org/
https://airnow.gov/

To calculate the AQI, the US EPA draws from various environmental monitors that each record a
pollutant. Six pollutant types are used to calculate the AQI:

PM2.5

Fine particulate matter with 2.5 micrometer diameter or smaller; examples include
ash, smoke and smog.

PM10

Coarse particulate matter with 10--2.5 micrometer diameter; examples include
dust, pollen and mold.

NO2 Nitrogen dioxide

SO2 Sulphur dioxide

CO Carbon monoxide

O3 Ozone

You will write a calculator that prompts the user for sensor data from multiple locations, calculates
the AQI for each location, and then reports some summary statistics about these locations. This
calculator will be built in stages: Checkpoint A, Checkpoint B, and then Final Code. There is a demo
associated with each intermediate stage.

Part of this project is an exercise in having control over functions and patterns to produce target
outputs. It is not a creative exercise, but rather the opportunity for you to demonstrate precision,
control and being detail-oriented. You are asked to demonstrate the requested behavior and output,
matching the sample output exactly. In all samples below, user input is shown in italics and
underlined.

Due Dates

• Checkpoint A: Due as a demo in any lab, drop-in tutoring or workshop before Thursday,
Sept. 21 at 7 PM.

https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
https://www.epa.gov/no2-pollution
https://www.epa.gov/so2-pollution
https://www.epa.gov/co-pollution
https://www.epa.gov/ozone-pollution
https://airnow.gov/index.cfm?action=airnow.mapsarchivedetail&domainid=2&mapdate=20160920&tab=0

• Checkpoint B: Due as a demo in any lab, drop-in tutoring or workshop before Thursday,
Sept. 28 at 7 PM.

• Final Code: Due via Moodle on Thursday, Oct. 5 at 11:55 PM.

Calculation Details

To write your calculator, you will need to understand the formula and data used by the EPA to
calculate AQI. You will need to refer to the below AQI Equation and AQI Breakpoint Table for
constants and logic to write your program.

AQI Equation

For each pollutant P, the sensor gives a concentration reading CP. This reading is typically an
average over some period of time. The index for that pollutant is given by the following equation:

IP = (Ihigh - Ilow) / (Chigh - Clow) * (CP - Clow) + Ilow

These variables are the following:

CP

The concentration of pollutant P.

Clow, Chigh

The low/high concentration breakpoints that
contain CP. These breakpoints are defined by
the EPA in the Breakpoint Table (below).

Ilow, Ihigh

The low/high index range associated with
concentration breakpoints for CP.

After we have the index for each pollutant, the AQI is simply the maximum index across all
pollutants.

Per EPA guidance, you should truncate all sensor values before calculation in the following way:

• PM2.5: truncate to 1 decimal place (µg/m3)
• PM10: truncate to integer (µg/m3)
• NO2: truncate to integer (ppb)
• SO2: truncate to integer (ppb)
• CO: truncate to 1 decimal place (ppm)
• O3: truncate to integer (ppb)

Note: Ozone (O3) is a complicated case, and is described in Checkpoint B in detail.

https://www3.epa.gov/airnow/aqi-technical-assistance-document-may2016.pdf

AQI Breakpoint Table

Data Source: https://aqs.epa.gov/aqsweb/documents/codetables/aqi_breakpoints.html

Example: AQI Calculation

f a PM2.5 sensor reads 30.1 µg/m3 average pollution over a 24-hour period, then this reading falls in
the 12.1--35.4 range for PM2.5 concentrations, associated with the 51--100 index range (this is in the
row of the table labeled "Moderate"). Thus, the AQI formula for this pollutant becomes:

IPM-2.5 = (Ihigh - Ilow) / (Chigh - Clow) * (CP - Clow) + Ilow

IPM-2.5 = (100 - 51) / (35.4 - 12.1) * (30.1 - 12.1) + 51 = 88.85 = 89

We can check this calculation using the EPA's AQI calculator:

https://aqs.epa.gov/aqsweb/documents/codetables/aqi_breakpoints.html
https://airnow.gov/index.cfm?action=airnow.calculator

Data Source: https://www3.epa.gov/airnow/aqi-technical-assistance-document-may2016.pdf

Checkpoint A
For Checkpoint A, you will need to demonstrate a program that does the following:

1. Prompts the user to enter the number of locations for which AQI will be calculated. For
Checkpoint A, you can assume that the user always enters a positive integer (greater than
zero).

2. Prompts the user to enter the name of each location.

3. Prompts the user, per location, to enter the pollutant concentrations for PM2.5, PM10 and
NO2 monitors. You can assume that the user always enters a valid float value for these.

4. Calculates and prints the quality index for each pollutant and, for each location, prints the
final AQI and the category label for the AQI.

5. Follows the EPA guidance on truncating the sensor readings (see the AQI Equation), and
rounds the final calculated AQI to the nearest integer.

6. Matches the sample input/output below.

The spacing will be checked. You can highlight over the sample to see the spacing. For
example, there are four spaces in front of the first ->.

We will use additional sample inputs to test your demo and your final program, and so should
you. You can test your program using the AQI calculator to check answers; however, there
may be discrepancies with out-of-range concentrations.

7. Demo. Demo Checkpoint A.

Sample Input/Output

Sample 1

=== Air Quality Index (AQI) Calculator ===

Select the number of locations for the report: 1

Enter name of ** Location 1 **: Rohnert Park

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: 3.2

 PM-2.5 concentration 3.2 yields 13 index

 -> PM-10 [ug/m3, 24-hr avg] Monitor: 0

 PM-10 concentration 0 yields 0 index

 -> NO2 [ppb, 1-hr avg] Monitor: 2.5

 NO2 concentration 2 yields 2 index

https://www3.epa.gov/airnow/aqi-technical-assistance-document-may2016.pdf
https://airnow.gov/index.cfm?action=airnow.calculator

 AQI for Rohnert Park is 13

 Condition: Good

Sample 2

=== Air Quality Index (AQI) Calculator ===

Select the number of locations for the report: 2

Enter name of ** Location 1 **: San Bernadino

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: 35.82

 PM-2.5 concentration 35.8 yields 102 index

 -> PM-10 [ug/m3, 24-hr avg] Monitor: 70.7

 PM-10 concentration 70 yields 58 index

 -> NO2 [ppb, 1-hr avg] Monitor: 205.2

 NO2 concentration 205 yields 121 index

 AQI for San Bernadino is 121

 Condition: Unhealthy for Sensitive Groups

Enter name of ** Location 2 **: Newport Beach

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: 10.59

 PM-2.5 concentration 10.5 yields 44 index

 -> PM-10 [ug/m3, 24-hr avg] Monitor: 40.1

 PM-10 concentration 40 yields 37 index

 -> NO2 [ppb, 1-hr avg] Monitor: 25

 NO2 concentration 25 yields 24 index

 AQI for Newport Beach is 44

 Condition: Good

Advice and Hints

Hint: There is some syntactic sugar in Python to assign values to multiple variables with a single line
of code:

x, y, z = 1, 2, 3 # assigns x the value 1, y the value 2 and z the value 3

Hint: There is some syntactic sugar in Python to chain conditionals:

if (1 <= x <= 10):

 # this is the same as if (1 <= x) and (x <= 10):

 print("Hi!")

Hint: float('inf') is larger than every other float, and float('-inf') is smaller than every other
float. You may find these useful as variable initializers, when you are tracking minima and maxima.

Checkpoint B
For Checkpoint B, you will extend your code from Checkpoint A by supporting all pollutants and
printing summary statistics:

1. Extend your program to support the pollutant concentration from SO2, CO and O3 monitors.

2. When calculating the ozone AQI, ignore 1-hr ozone readings less than 125 ppb and 8-hr
ozone readings greater than 200 ppb; otherwise, the ozone AQI between 100 and 300 is
computed by selecting the larger of the AQI calculated using the 1-hour ozone reading and
the AQI calculated using the 8-hour ozone reading.

3. After the AQI of each location has been reported, print a summary report that features: the
location with the maximum AQI, the location with the minimum AQI, and the average
PM2.5 concentration (average of those locations that had monitor readings for that pollutant).

4. Demo. Demo Checkpoint B.

Sample Input/Output

Sample 3

=== Air Quality Index (AQI) Calculator ===

Select the number of locations for the report: 1

Enter name of ** Location 1 **: Cupertino

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: 12.3

 PM-2.5 concentration 12.3 yields 51 index

 -> PM-10 [ug/m3, 24-hr avg] Monitor: 0.1

 PM-10 concentration 0 yields 0 index

 -> NO2 [ppb, 1-hr avg] Monitor: 0.5

 NO2 concentration 0 yields 0 index

 -> SO2 [ppb, 1-hr avg] Monitor: 11

 SO2 concentration 11 yields 16 index

 -> CO [ppm, 8-hr avg] Monitor: 12

 CO concentration 12.0 yields 143 index

 -> O3 [ppb, 8-hr avg] Monitor: 110

 -> O3 [ppb, 1-hr avg] Monitor: 170

 O3 concentration 110 yields 205 index

 AQI for Cupertino is 205

 Condition: Very Unhealthy

Summary Report

 Location with max AQI is Cupertino (205)

 Location with min AQI is Cupertino (205)

 Avg PM-2.5 concentration reading: 12.3

Sample 4

=== Air Quality Index (AQI) Calculator ===

Select the number of locations for the report: 3

Enter name of ** Location 1 **: Davis

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: 130

 PM-2.5 concentration 130.0 yields 189 index

 -> PM-10 [ug/m3, 24-hr avg] Monitor: 25.33

 PM-10 concentration 25 yields 23 index

 -> NO2 [ppb, 1-hr avg] Monitor: 5.4

 NO2 concentration 5 yields 5 index

 -> SO2 [ppb, 1-hr avg] Monitor: 0

 SO2 concentration 0 yields 0 index

 -> CO [ppm, 8-hr avg] Monitor: 1.4

 CO concentration 1.4 yields 16 index

 -> O3 [ppb, 8-hr avg] Monitor: 69

 -> O3 [ppb, 1-hr avg] Monitor: 100

 O3 concentration 69 yields 97 index

 AQI for Davis is 189

 Condition: Unhealthy

Enter name of ** Location 2 **: Woodland

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: 20

 PM-2.5 concentration 20.0 yields 68 index

 -> PM-10 [ug/m3, 24-hr avg] Monitor: 10

 PM-10 concentration 10 yields 9 index

 -> NO2 [ppb, 1-hr avg] Monitor: 40

 NO2 concentration 40 yields 38 index

 -> SO2 [ppb, 1-hr avg] Monitor: 15

 SO2 concentration 15 yields 21 index

 -> CO [ppm, 8-hr avg] Monitor: 1.4

 CO concentration 1.4 yields 16 index

 -> O3 [ppb, 8-hr avg] Monitor: 10.5

 -> O3 [ppb, 1-hr avg] Monitor: 123

 O3 concentration 10 yields 9 index

 AQI for Woodland is 68

 Condition: Moderate

Enter name of ** Location 3 **: Vacaville

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: 10

 PM-2.5 concentration 10.0 yields 42 index

 -> PM-10 [ug/m3, 24-hr avg] Monitor: 2

 PM-10 concentration 2 yields 2 index

 -> NO2 [ppb, 1-hr avg] Monitor: 10

 NO2 concentration 10 yields 9 index

 -> SO2 [ppb, 1-hr avg] Monitor: 5

 SO2 concentration 5 yields 7 index

 -> CO [ppm, 8-hr avg] Monitor: 2.4

 CO concentration 2.4 yields 27 index

 -> O3 [ppb, 8-hr avg] Monitor: 8

 -> O3 [ppb, 1-hr avg] Monitor: 165

 O3 concentration 165.0 yields 151 index

 AQI for Vacaville is 151

 Condition: Unhealthy

Summary Report

 Location with max AQI is Davis (189)

 Location with min AQI is Woodland (68)

 Avg PM-2.5 concentration reading: 53.3

Final Code
In your final code, you will extend the above code to handle two special user-input scenarios:

• If a user inputs a zero or a negative value for 'number of locations' then print an error
message and exit (see samples 5 and 6 below).

• If a user inputs a negative pollutant concentration, interpret this as meaning there is no
monitor for that pollutant at that location and, subsequently, ignore that pollutant during
relevant calculations (see sample 7 below).

There is no demo for your final code.

Advice and Hints

Hint: The exit() function in the sys library can be used to halt the program running and report an
exit code back to the operating system. Please use exit(-1), which will report it as an error. Here is
a little code demonstrating this, but note that it will not run in PythonTutor (which does not let you
use the sys library). You will need to copy-paste the code and run it in a different environment.

Hint: Be careful about computing the average PM-2.5 concentrations across locations, in the
scenario that the user did not have a PM-2.5 reading at some locations. For example, in Sample 7,
the average PM-2.5 value is 8.5 ug/m3, which is just the average of Santa Cruz's and Watsonville's
two readings.

Sample Input/Output

Sample 5

=== Air Quality Index (AQI) Calculator ===

Select the number of locations for the report: 0

http://www.pythontutor.com/visualize.html#code=import%20sys%0A%0Afor%20i%20in%20range%2810%29%3A%0A%20%20%20%20val%20%3D%20int%28input%28'Give%20me%20an%20odd%20integer%3A%20'%29%29%0A%20%20%20%20if%20val%20%25%202%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20print%28'Epic%20Fail%3A',%20val,%20'is%20even'%29%0A%20%20%20%20%20%20%20%20sys.exit%28-1%29%0A%20%20%20%20print%28'Thanks,%20good%20choice'%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
http://www.pythontutor.com/visualize.html#code=import%20sys%0A%0Afor%20i%20in%20range%2810%29%3A%0A%20%20%20%20val%20%3D%20int%28input%28'Give%20me%20an%20odd%20integer%3A%20'%29%29%0A%20%20%20%20if%20val%20%25%202%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20print%28'Epic%20Fail%3A',%20val,%20'is%20even'%29%0A%20%20%20%20%20%20%20%20sys.exit%28-1%29%0A%20%20%20%20print%28'Thanks,%20good%20choice'%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Error: 0 is not a valid input.

Sample 6

=== Air Quality Index (AQI) Calculator ===

Select the number of locations for the report: -20

Error: -20 is not a valid input.

Sample 7

=== Air Quality Index (AQI) Calculator ===

Select the number of locations for the report: 3

Enter name of ** Location 1 **: Santa Cruz

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: 5

 PM-2.5 concentration 5.0 yields 21 index

 -> PM-10 [ug/m3, 24-hr avg] Monitor: 12.5

 PM-10 concentration 12 yields 11 index

 -> NO2 [ppb, 1-hr avg] Monitor: 20.8

 NO2 concentration 20 yields 19 index

 -> SO2 [ppb, 1-hr avg] Monitor: 4

 SO2 concentration 4 yields 6 index

 -> CO [ppm, 8-hr avg] Monitor: 1.1

 CO concentration 1.1 yields 12 index

 -> O3 [ppb, 8-hr avg] Monitor: -1

 -> O3 [ppb, 1-hr avg] Monitor: -1

 AQI for Santa Cruz is 21

 Condition: Good

Enter name of ** Location 2 **: Watsonville

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: 12

 PM-2.5 concentration 12.0 yields 50 index

 -> PM-10 [ug/m3, 24-hr avg] Monitor: -1

 -> NO2 [ppb, 1-hr avg] Monitor: -1

 -> SO2 [ppb, 1-hr avg] Monitor: -1

 -> CO [ppm, 8-hr avg] Monitor: -1

 -> O3 [ppb, 8-hr avg] Monitor: -1

 -> O3 [ppb, 1-hr avg] Monitor: -1

 AQI for Watsonville is 50

 Condition: Good

Enter name of ** Location 3 **: Salinas

 -> PM-2.5 [ug/m3, 24-hr avg] Monitor: -1

 -> PM-10 [ug/m3, 24-hr avg] Monitor: -1

 -> NO2 [ppb, 1-hr avg] Monitor: 55

 NO2 concentration 55 yields 52 index

 -> SO2 [ppb, 1-hr avg] Monitor: -1

 -> CO [ppm, 8-hr avg] Monitor: 3.0

 CO concentration 3.0 yields 34 index

 -> O3 [ppb, 8-hr avg] Monitor: 56

 -> O3 [ppb, 1-hr avg] Monitor: -1

 O3 concentration 56 yields 54 index

 AQI for Salinas is 54

 Condition: Moderate

Summary Report

 Location with max AQI is Salinas (54)

 Location with min AQI is Santa Cruz (21)

 Avg PM-2.5 concentration reading: 8.5

Extra Credit
You can get extra credit by checking for more error conditions. For example, you could reject
NO2 concentrations that fall outside the range from the AQI Breakpoint Table. In each case, the
program should display a user-friendly message before exiting. You will get max +1 points for each
boundary condition you check.

You can get extra credit by checking that, when no sensor data is input to the program for a location,
it should not print the AQI for that location (+3), since none can be calculated.

You will get no more than 10 points total for extra credit. Be sure you describe any extra-credit work
in your docstring, explaining the judgements you made and you must include references justifying
these judgements. If you do not describe your extra credit work, it will get ignored.

Grading Rubric
Checkpoints [20%]

Checkpoint demos are each worth 10 points; each is all or nothing.

Programming Design and Style [25%]

In addition to being correct, your program should be easy to understand and well
documented. For details, see the rubric below.

Correctness [55%]

The most important part of your grade is the correctness of your final program. Your program
will be tested numerous times, using different inputs, to be sure that it meets the
specification. You will not get full credit for this unless your output matches the sample output
exactly for every case, including capitalization and spacing. Attention to detail will pay off on
this assignment. For details, see the rubric below.

Detailed Rubric

Correctness: functional features (50 points -- 5 points each)

Feature 1: For each AQI, a correct and matching "Condition:" message is reported (Ex:

Samples 1, 2, 3, 4 and 7). There are six possible condition messages (see the AQI

Breakpoint Table for the Category labels).

Feature 2: When the user inputs an invalid number for the number of locations, the program

produces an appropriate error message and exit code (Ex: Samples 5 and 6).

Feature 3: The locations with the max and min AQI are correctly reported in the Summary

Report (Ex: Samples 3, 4 and 7).

Feature 4: The average PM-2.5 concentration is correctly reported in the Summary Report.

This should work for these scenarios: for 1 location (Ex: Sample 3); for multiple

locations (Ex: Sample 4); when some locations are missing PM-2.5 measurements

(Ex: Sample 7). User input handling should reflect the standard guidance on how to

truncate PM-2.5 concentration readings.

Feature 5: Given a concentration for PM-2.5, the per-pollutant (IPM-2.5) index is correctly

computed, including: the truncation of the concentration data is performed correctly,

all boundary break-points are correctly reasoned, and the index formula is correctly

computed.

Feature 6: Given a concentration for PM-10, the per-pollutant (IPM-10) index is correctly

computed, including: the truncation of the concentration data is performed correctly,

all boundary break-points are correctly reasoned, and the index formula is correctly

computed.

Feature 7: Given concentrations for NO2, SO2 and CO, their per-pollutant indices are correctly

computed, including: the truncation of the concentration data is performed correctly,

all boundary break-points are correctly reasoned, and the index formula is correctly

computed.

Feature 8: Given a concentration for O3, the per-pollutant (IO3) index is correctly computed,

including: the truncation of the concentration data is performed correctly, all

boundary break-points are correctly reasoned, and the index formula is correctly

computed.

Feature 9: Given all per-pollutant indices (PM-2.5, PM-10, NO2, SO2, CO, and O3), the

location's AQI is correctly computed (Ex: Samples 3 and 4).

Feature 10: Given some per-pollutant indices (PM-2.5, PM-10, NO2, SO2, CO, and O3, where

one or more readings are missing from the user's input), the location's AQI is

correctly computed (Ex: Sample 7).

Correctness: spacing, spelling, grammar, punctuation (5 points)

Your spelling, punctuation, etc. get a separate score: each minor error in spacing, punctuation, or
spelling gets a score of 2.5, and each major error gets a score of 5. Here is how the score translates
to points on the assignment:

[5] Score = 0

-1 0 < Score <= 2.5

-2 2.5 < Score <= 5

-3 5 < Score <= 7.5

-4 7.5 < Score <= 10

-5 Score > 10

Programming Design and Style (25 points)

Docstring (5 points)

There should be a docstring at the top of your submitted file with the following information:

1 pt. Your name (first and last)

1 pt. The course (CS 115)

1 pt. The assignment (e.g., Project 1)

2 pts. A brief description of what the program does

Documentation (6 points)

Not counting the docstring, your program should contain at least three comments explaining

aspects of your code that are potentially tricky for a person reading it to understand. You

should assume that the person understands what Python syntax means but may not

understand why you are doing what you are doing.

6 pts. You have at least 3 useful comments (2 points each)

Variables (5 points)

5 pts. Variables have helpful names that indicate what kind of information they contain.

Algorithm (4 points)

2

pts.

Your algorithm is straightforward and easy to follow.

2

pts.

Your algorithm is reasonably efficient, with no wasted computation or unused

variables.

Program structure (5 points)

All or nothing: your code should define a main function and then call that function, just like

our programs do in the lab. Other than library imports, the docstring, and the final call

to main(), you should not have any stray code outside a function definition.

Catchall

For students using language features that were not covered in class, up to 5 points may be

taken off if the principles of programming style are not adhered to when using these features.

If you have any questions about what this means, then ask.

Submission
You should submit your final code on Moodle by the deadline. I strongly encourage you to take
precautions to make and manage backups while you work on your project, in case something goes
wrong either while working or with your submission to Moodle.

Name the file you submit to Moodle yourlastnameP1.py, substituting your actual last name (in
lowercase) for yourlastname.

Late Policies

Project late policies are outlined in the course policies page.

http://www.cs.sonoma.edu/cs115/F17/policies.html#proj-grading

Collaboration Policy

Programming projects must be your own work, and academic misconduct is taken very seriously.
You may discuss ideas and approaches with other students and the course staff, but you should
work out all details and write up all solutions on your own. The following actions will be penalized as
academic dishonesty:

• Copying part or all of another student's assignment
• Copying old or published solutions
• Looking at another student's code or discussing it in great detail. You will be penalized if your

program matches another student's program too closely.
• Showing your code or describing your code in great detail to anyone other than the course

staff or tutor.

Project collaboration policies are described in the course policies page.

Link to original work: http://www.cs.sonoma.edu/cs115/F17/proj/p1/cs115_p1.html

http://www.cs.sonoma.edu/cs115/F17/policies.html#proj-collab

