
 

Introduction 
 
You are already familiar with using loops to solve problems, which is known as iteration. 
 
This activity explores a new way to solve problems. To solve a large problem, we will use the solution of a 
smaller but similar problem. Eventually, we reach the most basic problem, for which we know the answer. We 
will explore this idea in three models. 
 
If you have 3 people, combine Facilitator and Process Analyst. 
 
If you have 4 people, split up into two pairs to program (Spokesperson and Process Analyst serve as drivers, 
Facilitator and Quality Control serve as navigators), but merge back to larger group of four to answer 
questions.  
 

Team Roles Team Member 
Facilitator: reads the questions aloud, keeps track of 
time and makes sure everyone contributes 
appropriately. 

 

Spokesperson: talks to the instructor and other 
teams. Compiles and runs programs when applicable.  

 

Quality Control: records all answers & questions,  
and provides team reflection to team & instructor. 

 

Process Analyst: Considers how the team could 
work and learn more effectively.  

 

 
 

The facilitator should note the amount of time spent on each Model here: 
Model 1:  
Model 2:  
Model 3: 

 

  



 

Model I. (20 min) Factorial 
 
When faced with a large problem to solve, we might seek to use a solution to a smaller, simpler problem.  If 
we repeatedly decompose the original problem into smaller simpler expressions, we will eventually identify the 
most simple or basic component that can’t be broken down any further.  This is referred to as the base case.  
 
Critical Thinking Questions 

 
1. Consider two different ways to show how to calculate 4! (the product of the numbers from 1 to 4). 

 
a) Write out all numbers that explicitly need to be multiplied 

 
4! =  
 

b) Write the expression using 3!  
 
4! =  
 

2. Write an expression similar to CTQ 1b showing how each factorial can be calculated in terms of a “simpler” 
factorial. (By definition, 0! = 1.) 

 
a) 3! =  

 
 

b) 2! =  
 
 

c) 1! =  
 
 

d) 100! =  
 

 
3. Generalize your group’s answer to CTQ 2 in terms of n to create an equation for factorial that would be 

true for all factorials except the base case.  
 

n! =  
 
 

4. What would your group propose to be the base case of a factorial method?  Record your group’s 
justification for this answer.  

 
 
 
5. Assume you have defined a static method factorial(int n) that returns n!  

a. Copy and paste your answer to CTQ 2d, which should include how 100! can be calculated using a 
“simpler” factorial.  

 
b. Convert your expression to Java code, making the appropriate method call to the factorial 



 

method and “hard coding” numbers as arguments.   
 
 
c. Now convert your equation for CTQ 3 to Java code that would calculate n! This time, you should 

not “hard code” numbers as arguments. 
 
 
 

 
 

6. If you used your answer for the previous question IN the definition for the factorial method, how 
does this method call differ from method calls you have used in previous programs? 

 
 

 
 

7. Is a loop necessary to calculate 3! based on your group’s answers above?  Describe your group’s 
reasoning. 

 
 
 
 

8. What type of programming control statement (branching or looping) is required to differentiate the 
successive method calls and the base case?  

 
 
 

 

 

  



 

Model II. (45 min) Recursion 
 
When a method makes a call to itself this is referred to as recursion.  To define a recursive method in Java, 
you should write an if-statement that checks for the base case. When the operation is not the base case, you 
include a call to the method you are writing.  
 
In a new file called RecursionExample.java, create a class called RecursionExample. Then add the following 
factorial definition: 

 

/** calculates n factorial 
*/ 
public static int factorial(int n) { 
     System.out.println("n is " + n); 

if (n == 0) 
    return 1; 
else { 
    System.out.println("need factorial of "  
                       + (n1)); 
    int answer = factorial(n1); 
    System.out.println("factorial of " +(n1)  
                       + " is " + answer); 
    return answer * n; 
} 

} 
 

public static void main(String[] args) { 
System.out.println(factorial(3)); 

} 

 
 
Critical Thinking Questions 

 
9. How many distinct calls are made to the factorial method to calculate the factorial of 3? Identify the value 

of the parameter n for each of these separate calls. 
 

 
 

10. Examine your output when you ran the main method. How many lines were printed by the program? 
 
 
11. For each printed line, identify which distinct factorial method call printed that line. In other words, which 

lines were printed by factorial(3), which lines were printed by factorial(2), and so on. 
 
 

 
 
 



 

 
 

12.What happens if you try to calculate the factorial of a negative number? Fix the bug in the factorial method 
so this does not occur.  

 
 
 
 

13. Consider two different ways to show how to calculate ∑
4

i−1
i  

a) Write out all numbers that explicitly need to be summed 
 

=∑
4

i=1
i   

  
b) Write an expression showing how this sum can be calculated in terms of a “simpler” sum.  

 

 =∑
4

i=1
i   

 
 

14.Generalize your group’s answer to CTQ 13b in terms of n that would be true for all sums except the base 
case.  

 
 
 

15.What is the “value” of the base case of a summation expression?  
 

 
 

 
 
  



 

Team Programming:  
 

A. In a new file, RecursionTeam.java, create a static recursiveSummation method that takes a single 

int parameter n and returns the summation  (as an int) using recursion. Your method should have∑
n

i=1
i  

an if-else statement and NO loops. Your method can return any number you wish for negative numbers, 
but it should not crash. Your method should not contain all the System.out.println commands that were 
included as part of the original factorial method. If you use them to help you debug, you should comment 
them out once your method works correctly. You can test your method in Dr. Java’s Interactions Pane. 

 
B. All recursive methods can also be written with iteration (i.e., loops). In the same file, add a static 

iterativeSummation  method that takes a single int parameter n and returns the same 
summation as an int. This method should include either a while-loop or a for-loop. Again, you can return 
any number you wish for negative numbers, as long as your method does not crash. 

 
 
 
 
 

Critical Thinking Question 
 

16.Describe the similarities and differences in the performance of the iterative and recursive algorithms when 
calculating the sum of successively larger values of n.  

 
 
 
 
 
 
 
 
 

17. Identify any advantages of using an iterative algorithm in contrast to a recursive algorithm.  
 
 
 
 
 
 
 
 
 

  



 

Model III. (20 min) Order of Execution 
 
Not all recursive methods need to have an if and else statement. Sometimes you only need the if-statement, 
while other times you might need multiple branches (if-else if-else). For example, type in the following method 
into RecursionExample.java (replacing your main method): 
 

public static void countdown(int n) { 
    if (n >= 1) { 
        System.out.println(n); 
        countdown(n1); 
    } 
} 
 
public static void main(String[] args) { 
    countdown(10); 
} 

 
Critical Thinking Question 

 
18.What is the base case for a recursive algorithm that does not require an else branching statement?  

 
 

 
 

19.Modify the countdown method so it counts up (i.e., printing 1 to 10) instead of counting down. You 
should be able to make this change by cutting-and-pasting entire lines of code; edits to individual lines of 
code (such as changing numbers) should not be necessary. Give the lines of code that were changed here: 

 
 
 

 
20. Consider the modification changes required if this algorithm was written iteratively. Identify one advantage 

of using a recursive algorithm in contrast to an iterative algorithm.  
 
 
 

  



 

Team Programming:  
 

i. Open RecursionTeam.java again. Define a static power method that takes two ints as parameters, x and n, 
calculates and returns . Use the following recursive definition:x 

n  

 

when n is even  x 
n = x(  

n/2)2  

when n is odd  x 
n = x × x(  

(n−1)/2)2  

 when n is 0x 
0 = 1  

 
Notice that there are multiple cases, so you should use an if-else if-else in your recursive method. You 
should NOT use any loops, nor should you call the Math.pow method. However, to calculate any 
number squared ( ). you should multiply the number by itself ( ).y 

2 ×yy  

 
ii. Explain whether or not this recursive power method could be written iteratively using the same algorithm. 

Identify one advantage of using this recursive algorithm to an iterative approach.  Include your answer as a 
comment in your Java file. 

 
 

 
 
Group Reflection:  
 
Quality Control:  

1. What are the two parts of a recursive program? 

 

2. Explain how the argument in a recursive program causes the recursion to repeat yet eventually stop? 

 

 

 

Process Analyst: Has your group improved in ability to solve more difficult problems together? If yes, justify 
your answer. If no, brainstorm on how your group might improve. 

 


