
Timestamp 2/6/2017

Website: https://www.cs.hmc.edu/twiki/bin/view/CS5/ASCIIArtGold

CS5 Web > Homework8Gold > ASCIIArtGold

Next HW: Homework 2: Functioning recursively will be due on: Mon., Feb.
6, 11:59pm
Next Lab: Lab 2: Turtle!! will be held on: Tue./Wed. evening, Jan. 31-Feb. 1

Submissions: CS submission site

Gold Hw8 Problem 4: ASCII Art

up to +8 e.c. points; individual or pair (even more for the crazy diamond...)

Place all of the code for this problem in a file called hw8pr4.py.

In this assignment you will revisit a classic art form: ASCII art!

Important limitation! For these problems, you should not use Python's
string-multiplication or string-addition operators.

Because our goal is to use loop constructs, use loops to achieve the

repetition that those operators might otherwise provide. There is one

exception, however — you may use string-multiplication with the space

character ' '. That is, you can create any number of consecutive spaces with

constructs like

 ' '*n

ASCII art problems

The goal of this problem is to solidify further your reasoning skills with loops,
and nested loops. For many of the problems (especially the striped

diamond), you will have to think carefully about the value of your loop
control variable as your loop or loops execute. "Debugging by random

permutation" — that is, arbitrarily changing the values of your loop
conditions or variables — will lead to much frustration. The path to success

on this assignment is to reason carefully about your loops.

There are five problems here, the first two are worth 1 point and the other

three are worth 2 points each.

https://www.cs.hmc.edu/twiki/bin/view/CS5/ASCIIArtGold
https://www.cs.hmc.edu/twiki/bin/view/CS5/WebHome
https://www.cs.hmc.edu/twiki/bin/view/CS5/Homework8Gold
https://www.cs.hmc.edu/twiki/bin/view/CS5/ASCIIArtGold
https://www.cs.hmc.edu/twiki/bin/view/CS5/Homework2Gold
https://www.cs.hmc.edu/twiki/bin/view/CS5/Lab2Turtle
http://www.cs.hmc.edu/submit

The printCrazyStripedDiamond is worth a possible +5 points beyond the

others. It is, however, crazy...

printRect

Write a function named printRect that takes three arguments, width, height,

and symbol, and prints a width by height rectangle of symbols on the screen.

In [1]: printRect(4, 6, '%')

% % % %

% % % %

% % % %

% % % %

% % % %

% % % %

Hint: If you look back at the slides from the first day of nested loops
(10/27/15), you'll see that we did precisely this problem! The only
differences are that

 the width is a variable, instead of a constant
 the height is a variable, instead of a constant

 the character printed is a variable, instead of a constant

printTriangle

Create a function printTriangle that takes three arguments: width, symbol,

and rightSideUp and prints a triangle of symbols on the screen. width is a

number that determines the width of the base of the triangle

and rightSideUp is a boolean that determines whether the triangle is printed

right side up (True) or upside down (False).

In [1]: printTriangle(3, '@', True)

@

@ @

@ @ @

In [2]: printTriangle(3, '@', False)

@ @ @

@ @

@

printBumps

Now, use your printTriangle function to write a function called printBumps(

num, symbol1, symbol2) that will print the specified number of two-symbol

"bumps", where each bump is larger than the last, as in the following

example:

In [1]: printBumps(4, '%', '#')

%

%

% %

%

% %

% % %

%

% %

% % %

% % % %

printDiamond

For these "diamond" functions, you may use string multiplication, but only

for strings of blank spaces, such as ' '*n or the like. Each visible character

should be printed separately, just as in the functions earlier in this problem.

Also, you don't have to use the string * operator for strings of spaces, either.

Write a function called printDiamond(width, symbol) that prints a diamond

of symbol whose maximum width is determined by width.

In [1]: printDiamond(3, '&')

 &

 & &

 & & &

 & &

 &

printStripedDiamond

Next, write a function called printStripedDiamond(width, sym1, sym2) that

prints a "striped diamond" of sym1 and sym2.

For example:

In [1]: printStripedDiamond(7, '.', '%')

 .

 . %

 . % .

 . % . %

 . % . % .

 . % . % . %

. % . % . % .

 % . % . % .

 . % . % .

 % . % .

 . % .

 % .

 .

printCrazyStripedDiamond

Finally, (and this is worth +5 points beyond the +8 for the previous

figures...) write a function called printCrazyStripedDiamond(width, sym1, sym2,

sym1Width, sym2Width) that prints a "striped diamond" of sym1 and sym2

where the stripes can have varied widths. sym1Width determines the width of

the stripe made of symbol 1 and sym2Width determines the width of the stripe

made of symbol 2.

For example:

In [1]: printCrazyStripedDiamond(7, '.', '%', 2, 1)

 .

 . .

 . . %

 . . % .

 . . % . .

 . . % . . %

. . % . . % .

 . % . . % .

 % . . % .

 . . % .

 . % .

 % .

 .

Be sure to submit your problem to the usual place as hw8pr4.py.

